Содержание

Введение	6
1 Исходные данные	7
2 Определение теплоты сгорания газообразного топлива	8
3 Определение численности населения	8
4 Определение годовых расходов теплоты	8
4.1 Определение годового расхода теплоты при потреблении газа в квартирах	9
4.2 Определение годового расхода теплоты при потреблении газа	на
предприятиях бытового обслуживания	9
4.3 Определение годового расхода теплоты при потреблении газа	на
предприятиях общественного питания	10
4.4 Определение годового расхода теплоты при потреблении газа в учреждени	иях
здравоохранения	10
4.5. Определение годового расхода теплоты при потреблении газа	на
хлебозаводах и пекарнях	11
4.6 Определение годового расхода теплоты на отопление, вентиляцию, горяч	чее
водоснабжение жилых и общественных зданий	12
4.7 Определение годового расхода теплоты при потреблении газа на нуж	ζДЫ
торговли, предприятий бытового обслуживания населения, школ и ВУЗов	13
4.8 Итоговая таблица потребления газа городом	14
4.9 Определение годовых и часовых расходов газа различными потребителя	ни
города	14
5 Описание распределительной системы газоснабжения района города	16
5.1 Количество сетевых газорегуляторных пунктов (ГРП) для микрорайона "Б"	18
	40
6 Проектирование наружных сетей системы городского газоснабжения	19
6.1 Гидравлический расчет тупиковых сетей среднего (высокого) давлений	19
6.2 Гидравлический расчёт кольцевых сетей низкого давления	22
6.3 Гидравлический расчёт дворовых газопроводов	28

6.4 Расчёт внутридомовой сети газоснабжения	31
7 Защита газопровода от коррозии	34
8 Подбор регуляторов давления	35
9 Подбор фильтров	36
10 Выбор предохранительно-запорного клапана	37
11 Выбор предохранительно-сбросного клапана	37
Библиографический список	38
Приложение №1	39
Приложение №2	40

Введение

Распределительные системы являются сложными многокольцевыми системами, экономичное проектирование которых должно базироваться на современных методах оптимизации с учетом вероятностного характера функционирования и обеспечения требуемой надежности подачи газа потребителям. Поэтому методики расчета системы, построены на базе современных представлений о случайных процессах потребления газа и функционирования элементов системы и использования математических методов оптимизации.

В основу проектирования и расчета систем снабжения сжиженными углеводородными газами положены термодинамические свойства двухфазных, многокомпонентных систем с учетом климатических условий расположения газоснабжаемых объектов.

1 Исходные данные.

Месторождение газа: Тенгенское, проектируемый город: Алма-Ата.

Таблица 1. Состав газа.

Название	метан	Этан	пропан	бутан	пентан	углекислый газ	редкие
Формула	CH4	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂	CO ₂	
%	89,4	6	2	0,7	0,4	1	0,5
ρ, κ г/ м ³	0,717	1,357	2,019	2,703	3,22	1,9768	1,2505
Q, кДж/м ³	35840	63730	93370	123770	123770	-	-

Коэффициент охвата газоснабжением населения $Y_{KB} = 1$.

В данном районе 37,2% жителей подключены к централизованной системе ГВС, 27,4% — имеют газовые водонагреватели, 35,4% — не имеют водонагревателей и не подключены к ГВС.

Потребление газа банями:

- доля населения города, пользующегося банями Z_Б =0,5;
- доля бань города, использующих газ в виде топлива Y_Б =1;
- частота посещения бань, равная одному разу в неделю.

Потребление газа прачечными:

- доля населения города, пользующегося прачечными $Z_{\Pi} = 0.2$;
- доля прачечных города, использующих газ в виде топлива Y_П =1.

Потребление газа предприятиями общественного питания:

- доля населения города, пользующегося предприятиями общественного питания $Z_{\Pi.O\Pi}=0,1$, причем считается, что из числа людей, постоянно пользующихся столовыми, кафе и ресторанами, каждый человек посещает их 360 раз в году;
- доля предприятий общественного питания города, использующих газ в виде топлива $Y_{\Pi,O\Pi}=1$.

Потребление газа учреждениями здравоохранения:

– степень охвата газоснабжением учреждений здравоохранения города $Y_{3\Pi} = 0,5.$

Потребление газа хлебозаводами и пекарнями:

доля охвата газоснабжением хлебозаводов и пекарен Y_{X3}=0,5.

2 Определение теплоты сгорания газообразного топлива.

$$Q_{H}^{CM} = \sum r_{i} \cdot Q_{H}^{i}$$

где r_i - процентное содержание газа,

 Q_{H}^{i} - теплота сгорания компонента газовой смеси (состав газа см. в таблице 1)

$$Q_{H}^{CM} = (89,4\cdot35,84+6\cdot63,73+2\cdot93,37+0,7\cdot123,77+0,4\cdot123,77)/100 = 39,09$$
 МДж/м 3 .

$$\boldsymbol{p}_{\text{CM}} = \sum \boldsymbol{r}_{i} \cdot \boldsymbol{p}_{i}$$

где рі - плотность компонента газовой смеси.

$$p_{H}^{\text{CM}} = (89, 4 \cdot 0, 717 + 6 \cdot 1, 357 + 2 \cdot 2, 019 + 0, 7 \cdot 2, 703 + 0, 4 \cdot 3, 22 + 1 \cdot 1, 9768)/100 = 0,814 \\ \text{kg/m}^{3}.$$

3 Определение численности населения.

Расход газа на коммунально-бытовые и теплофикационные нужды города или поселка зависит от числа жителей. Т.к. количество жителей точно не известно, то приближенно определяется по плотности населения на один гектар.

$$N = F_{p} \cdot m \tag{1}$$

F_p - площадь района,

т - плотность населения.

Из исходных данных: этажность застройки 5-ти этажная, то m = 340 чел/Га и площадь микрорайона F_p = 3227300 м² = 322,73 Га.

$$N = 322,73 \cdot 340 = 109728$$
 чел

4 Определение годовых расходов теплоты.

Расход газа на различные нужды зависит от расходов теплоты, необходимой, например, для приготовления пищи, стирки белья, выпечки хлеба, и.т.п...

Точный расчет расхода газа на бытовые нужды сделать практически невозможно, так как расход газа зависит от целого ряда факторов, которые не

поддаются точному расчёту. Поэтому потребление газа определяют по усредненным нормам расхода теплоты.

4.1 Определение годового расхода теплоты при потреблении газа в квартирах.

$$Q_k = Y_{KB} \cdot N \cdot (x_1 \cdot q_1 + x_2 \cdot q_2 + x_3 \cdot q_3)$$

$$(2)$$

где Y_K - степень охвата газоснабжением города (определяется заданием);

N - число жителей;

Z₁ - доля людей, проживающих в квартирах с централизованным горячим водоснабжением;

 Z_2 - доля людей, проживающих в квартирах с горячим водоснабжением от газовых водонагревателей;

Z₃ - доля людей, проживающих в квартирах без централизованного горячего водоснабжения и не имеющих газовых водонагревателей;

 q_1, q_2, q_3 - нормы расхода теплоты на одного человека в год в квартирах /1/.

$$Q_k = 1 \cdot 109728 \cdot \left(0,372 \cdot 2800 + 0,274 \cdot 8000 + 0,354 \cdot 4600\right) = 533,5 \cdot 10^6 \, \text{МДж/год}$$

4.2 Определение годового расхода теплоты при потреблении газа на предприятиях бытового обслуживания

Расход теплоты для данных потребителей учитывает расход газа на стирку белья в прачечных, на помывку людей в банях

$$Q_{B-\Pi} = Q_B + Q_\Pi \tag{3}$$

Расход теплоты в банях определяется по формуле

$$Q_{B} = Z_{B} \cdot Y_{B} \cdot N \cdot 52 \cdot q_{B} \tag{4}$$

где Z_6 - доля населения города, пользующегося банями;

Y_Б - доля бань города, использующих газ в виде топлива;

q_Б - норма расхода теплоты на помывку одного человека по /2/.

$$Z_{\rm F} = 0.5$$
, $Y_{\rm F} = 1$, $q_{\rm F} = 50$ МДж,

 $Q_5 = 0.5 \cdot 1 \cdot 109728 \cdot 52 \cdot 50 = 142,65 \cdot 10^6 \text{ МДж/год.}$

Расход теплоты на стирку белья в прачечных определяется по формуле:

$$Q_{\Pi} = q_{\Pi} \cdot 100 \cdot (Z_{\Pi} \cdot Y_{\Pi} \cdot N) / 1000 \quad (M \angle M \times rod), \tag{5}$$

здесь Z_{Π} - доля населения города, пользующегося прачечными;

 Y_{Π} - доля прачечных города, использующих газ в виде топлива;

q_□ - норма расхода теплоты на 1 тонну сухого белья /2/.

В формулу заложена средняя норма поступления белья в прачечные, равная 100 тоннам на 1000 жителей.

$$Z_{\Pi} = 0.2$$
, $Y_{\Pi} = 1$, $q_{\Pi} = 18800$,

$$Q_{\Pi}$$
=18800 ·100 · (0,2017·1·109728) / 1000=41,6·10⁶ МДж/год,

$$Q_{\text{Б-}\Pi} = Q_{\text{Б}} + Q_{\Pi} = 142,65 \cdot 10^6 + 41,6 \cdot 10^6 = 184,25 \cdot 10^6 \text{ МДж/год.}$$

4.3 Определение годового расхода теплоты при потреблении газа на предприятиях общественного питания

Расход теплоты на предприятиях общественного питания учитывает расход газа на приготовление пищи в столовых, кафе и ресторанах.

Расход теплоты на предприятиях общественного питания, МДж/год, определяется по формуле:

$$Q_{\Pi,O\Pi} = 360 \cdot Z_{\Pi,O\Pi} \cdot Y_{\Pi,O\Pi} \cdot N \cdot q_{\Pi,O\Pi}, \tag{6}$$

где Z_{П.ОП} - доля населения города, пользующегося предприятиями общественного питания;

Y_{П.ОП} - доля предприятий общественного питания города, использующих газ в виде топлива;

 $q_{\Pi.O\Pi}$ - объединённая норма расхода теплоты на приготовление завтраков, обедов и ужинов , $q_{\Pi.O\Pi} = q_3 + q_0 + q_y$ МДж, где q_3 , q_0 , q_y - нормы расхода теплоты на приготовление одного завтрака , обеда, ужина, по /1/.

Считается, что из числа людей, постоянно пользующихся столовыми, кафе и ресторанами, каждый человек посещает их 360 раз в году.

$$Z_{\Pi.O\Pi} = 0,1, Y_{\Pi.O\Pi} = 0,5, q_{\Pi.O\Pi} = 2,1 + 4,2 + 2,1 = 8,4 MДж,$$

Q
$$_{\Pi.O\Pi} = 360 \cdot 0,1 \cdot 0,5 \cdot 109728 \cdot 8,4 = 16,59 \cdot 10^6 \,\text{МДж/год.}$$

4.4 Определение годового расхода теплоты при потреблении газа в учреждениях здравоохранения

При расходе газа в больницах и санаториях следует учитывать, что их

общая вместимость должна составлять 12 коек на 1000 жителей города или поселка.

Расход теплоты, МДж/год, определяется по формуле:

$$Q_{3A} = \frac{12 \cdot Y_6}{1000} \cdot N \cdot q_{y3} \tag{7}$$

где Y_{6} - степень охвата газоснабжением учреждений здравоохранения города (задаётся) Y_{6} =0,5;

 q_{y_3} – годовая норма расхода теплоты в лечебных учреждениях, принимается по /1/;

$$q_{v3} = q_{\Pi} + q_{\Gamma}$$

где q_{Π}, q_{Γ} - нормы расхода теплоты на приготовление пищи и приготовлении горячей воды в лечебных учреждениях.

$$Y_6 = 0.5$$
, $q_{y_3} = 3200 + 9200 = 12400$ (МДж),
$$Q_{_{34}} = \frac{12 \cdot 0.5}{1000} \cdot 109728 \cdot 12400 = 8.16 \cdot 10^6 \text{ МДж/год.}$$

4.5. Определение годового расхода теплоты при потреблении газа на хлебозаводах и пекарнях

При выпечке хлеба и кондитерских изделий, составляющих основной вид продукции данных потребителей газа, следует учитывать разницу в потреблении тепла на разные виды продукции. Норма выпечки хлеба в сутки на 1000 жителей принимается в размере 0,6 - 0,8 тонны. В эту норму входит выпечка и чёрного и белого хлеба, а так же выпечка кондитерских изделий. Точно определить сколько какого вида продукции потребляют жители очень трудно. Поэтому общую норму 0,6 - 0,8 тонны на 1000 жителей можно условно поделить пополам, считая, что хлебозаводы и пекарни поровну выпекают чёрный и белый хлеб. Выпечка кондитерских изделий может быть учтена отдельно, например, в размере 0,1 тонны на 1000 жителей в сутки.

При расчёте расхода газа следует учитывать охват газоснабжением хлебозаводов и пекарен. Общий расход теплоты на хлебозаводы и пекарни определяются по формуле:

$$Q_{x_3} = \frac{y_{x_{.3}} \cdot N \cdot 365((0,3...0,4) \cdot q_{_{YX}} + (0,3...0,4) \cdot q_{_{\bar{D}X}} + 0,1 \cdot q_{_{\bar{K}\bar{M}}}}{1000}, \tag{8}$$

где Y_{X3} - доля охвата газоснабжением хлебозаводов и пекарен Y_{X3} =0,5;

q_{чх} - норма расхода теплоты на выпечку 1 тонны чёрного хлеба,

q_{бХ} - норма расхода теплоты на выпечку 1 тонны белого хлеба,

q_{ки} - норма расхода теплоты на выпечку 1 тонны кондитерских изделий.

Все q принимаются по /1/.

 $q_{\text{ЧX}}$ = 2500 (МДж), $q_{\text{БX}}$ = 5450 (МДж), $q_{\text{КИ}}$ = 7750 (МДж),

$$Q_{x_3} = \frac{0.5 \cdot 109728 \cdot 365 \cdot \left[0.3 \cdot 2500 + 0.3 \cdot 5450 + 0.1 \cdot 7750\right]}{1000} = 63,28 \cdot 10^6 \, \text{МДж/год}.$$

4.6 Определение годового расхода теплоты на отопление, вентиляцию, горячее водоснабжение жилых и общественных зданий.

Годовой расход теплоты МДж/год на отопление и вентиляцию жилых и общественных зданий вычисляют по формуле:

$$Q_{oB} = \frac{q_{OB} \cdot F \cdot n_o}{\eta_o} \left[\frac{t_{BH} - t_{cpo}}{t_{BH} - t_{p.o}} \cdot (24(1+k) + zk_1 k) \right], \tag{9}$$

где t_{BH} , $t_{CP.O}$, t_{PO} - температуры соответственно внутреннего воздуха отапливаемых помещений, средняя наружного воздуха за отопительный период, расчётная наружная для данного района строительства по /3/.

 $k,\ k_1$ - коэффициенты, учитывающие расходы теплоты на отопление и вентиляцию общественных зданий (при отсутствии конкретных данных принимают k=0,25 и $k_1=0,4$);

Z - среднее число часов работы системы вентиляции общественных зданий в течение суток (Z = 16);

n_O - продолжительность отопительного периода в сутках;

F - общая площадь отапливаемых зданий, м²;

 $F = N \cdot f_p$ (где f_p – норма общей площади квартиры, приходящейся на одного человека, рекомендуется принимать 12...15 м²/чел).

$$F = 109728 \cdot 13 = 1426464 \text{ m}^2$$

q_{OB} - укрупненный показатель максимального часового расхода теплоты на отопление жилых зданий по /2/, МДж/ч·м²:

Согласно /2/ $q_{OB} = 0,603$ (МДж/ч·м²).

 η_{O} - коэффициент полезного действия отопительной котельной (η_{O} =0,8-0,85);

Согласно ГОСТ 30494 «Здания жилые и общественные. параметры

микроклимата в помещениях» 1 t_{вн} =20 °C.

Согласно /3/ $t_{CP.O}$ = - 1,6 °C, t_{PO} = - 21 °C, n_O = 168 сут.

$$Q_{_{OB}} = \frac{0,\!603 \cdot 1426464 \cdot 168}{0,\!85} \left\lceil \frac{20 + 1,\!6}{20 + 21} \cdot \left(24 \cdot (1 + 0,\!25) + 16 \cdot 0,\!4 \cdot 0,\!25 \right) \right\rceil = 2830 \cdot 10^6$$

МДж/год

Годовой расход теплоты на централизованное горячее водоснабжение от котельных и ТЭЦ определяют по формуле:

$$Q_{rB} = \frac{24q_{rB}N_{rB}}{\eta_{rB}} \left[n_o + (350 - n_o) \cdot \frac{60 - t_{xx}}{60 - t_{xx}} \beta \right], \tag{10}$$

где $q_{\Gamma B}$ - укрупненный показатель среднечасового расхода теплоты на горячее водоснабжение определяется по /2/;

 $N_{\Gamma B}$ - число жителей города, пользующихся горячим водоснабжением от котельных или ТЭЦ;

 β - коэффициент, учитывающий снижение расхода горячей воды в летний период (β =0,8);

 $t_{X3},\ t_{X\Pi}$ - температуры водопроводной воды в отопительный и летний периоды, °C (при отсутствии данных принимают $t_{X\Pi}=15,\ t_{X3}=5$).

 $q_{\Gamma B} = 1,47 MДж/(чел·ч),$

 $N_{\Gamma B} = 0.372 \cdot 109728 = 40819$ чел.

$$Q = \frac{24 \cdot 1{,}47 \cdot 40819}{0{,}85} \left[221 + (350 - 221) \cdot \frac{60 - 15}{60 - 5} \cdot 0{,}8 \right] = 517.5 \cdot 10^6 \text{ МДж/год.}$$

4.7 Определение годового расхода теплоты при потреблении газа на нужды торговли, предприятий бытового обслуживания населения, школ и ВУЗов

В школах и вузах города газ может использоваться для лабораторных работ. Для этих целей принимают средний расход теплоты на одного учащегося или студента в размере 50 МДж/(год·чел.):

$$Q_{III} = 0.3 \cdot N \cdot 50, \tag{11}$$

где N - количество жителей, (чел), коэффициент 0,3 - доля населения школьного возраста и младше.

$$Q_{III} = 0.3 \cdot 109728 \cdot 50 = 1.65 \cdot 10^6 MДж/год.$$

4.8 Итоговая таблица потребления газа городом

Таблица 2. Итоговая таблица расхода газа городом

N°	Потреоитель Геплоты,		расход газа,	Кол-во часов использования макс. нагрузки,	Часовой расход газа
п/п		10 ⁶ МДж/год	V _{год} , 10°м°/год		V _{ч,} м ³ /ч
1	Квартиры	533,5	13647,99	2600	5249,23
2	Бани	142,65	3649,27	2700	1351,58
3	Прачечные	41,6	1064,21	2900	366,97
4	Предп. общ. питания	16,59	424,41	2000	212,20
5	Учрежд. здравоохр.	8,16	208,75	2700	77,31
6	Хлебозаводы	63,28	1618,83	6000	269,80
7	Отопление и вентиляция	2830	72397,03	2124	34085,23
8	Горячее водоснабжение	517,5	13238,68	2124	6232,90
9	Котельная	3347,5	85635,71	2124	40318,13
10	Школы и д/с	1,65	42,21	2000	21,11

4.9 Определение годовых и часовых расходов газа различными потребителями города.

Годовой расход газа в м³/год для любого потребителя города или района.

$$V_{i,rod} = \frac{Q_{i,rod}}{Q_P^H}$$
 (12)

где $Q_{i rog}$ - годовой расход теплоты соответствующего потребителя газа (берется из графы 3 таблицы 2);

 Q_P^H - низшая теплота сгорания (МДж/м 3) , определяется по химическому составу газа (при отсутствии данных принимается равной 39,09 МДж/м 3).

Результаты расчётов годовых расходов газа по всем потребителям города вносим в таблицу 2 в графу 4.

$$V_{i,rod} = \frac{533,5 \cdot 10^6}{39.09} = 13647,99 \cdot 10^3 \text{ МДж/м}^3$$

Потребление газа в городе различными потребителями зависит от многих факторов. Каждый потребитель имеет свои особенности. Между ними существует

определенная неравномерность в потреблении газа. Учет неравномерности потребления газа осуществляется путем введения коэффициента часового максимума, который обратно пропорционален периоду, в течение которого расходуется годовой ресурс газа при максимальном его потреблении

$$K_{m} = \frac{1}{m} \tag{13}$$

где m - количество часов использования максимума нагрузки в году, ч/год С помощью K_m определяется часовой расход газа для каждого потребителя города ($m^3/ч$)

$$V_{i,\text{vac}} = V_{i,\text{rod}} \cdot K_{m} = \frac{V_{i,\text{rod}}}{m}$$
 (14)

Значения коэффициента т приведены в /1/.

Кол-во часов использования максимума для отопительных котельных определяется по формуле:

$$m_{\text{kot}} = 24 \cdot n_0 \cdot \frac{t_{\text{BH}} - t_{\text{cp.o}}}{t_{\text{BH}} - t_{\text{p.o}}}$$
 (15)

$$m_{_{\text{КОТ}}} \, = 24 \cdot 168 \cdot \frac{20 + 1,6}{20 + 21} = 2124 \,$$
 ч/год.

Все полученные данные вносятся в таблицу 3 «Сводная таблица расходов газа жилым районом».

Таблица 3. Сводная таблица использования газа жилым районом.

Вид расхода	Единица измерения	На бытовые нужды	На коммунально-бытовые нужды населения			Котельной на О.В.ГВС	Хлебоза- воды	Школы и д/с	Всего на район	
	•	(ГРП)	больницей	баней	прачечной	0,6,160			•	
Годовые	10 ³ м3/год	13647,99	208,75	3649,27	1064,21	85635,71	1618,83	42,21	105866,97	
Расчетные	м3/час	5249,23	77,31	1351,58	366,97	40318,13	269,80	21,11	47654,14	

5 Описание распределительной системы газоснабжения района города

Автоматические газорегуляторные устройства, устанавливаемые для обслуживания городских распределительных систем, называются газорегуляторными пунктами (ГРП), аналогичные установки внутри зданий — газорегуляторными установками (ГРУ). Назначение их одинаковое — поддержание связи между газопроводами различных давлений, сводящееся к автоматическому регулированию количества и давления газа, транспортируемого из газопровода с большим давлением в газопровод с меньшим.

ГРП запроектированы для давлений на входе 0,3; 0,6; 1,2 МПа и давлений на выходе от 0,001 до 0,6 МПа. Типовые проекты разработаны на базе универсальных регуляторов давления прямого и не прямого действия типа РДБК. Производительность ГРП выбирается по производительности регулятора давления. На вводах и выводах газа из ГРП на расстояниях не ближе 5 и не далее 100 м от ГРП устанавливаются колодцы с запорными устройствами на газопроводах.

Оборудование сетевых газорегуляторных пунктов состоит из следующих основных узлов и элементов: узла регулирования давления газа с предохранительно-запорным клапаном и обводным газопроводом (байпасом), предохранительного сбросного клапана, комплекта контрольно-измерительных приборов.

Газ высокого или среднего давления входит в ГРП и поступает в узел регулирования, в котором оборудование по ходу движения газа располагают в такой последовательности: отключающее устройство; фильтр для очистки газа от механических примесей и пыли; предохранительный запорный клапан для отключения подачи газа потребителем при недопустимом повышении или понижении давления после регулятора; регулятор давления для снижения

давления газа и поддержание его постоянным после себя; отключающее устройство. В качестве отключающих устройств при диаметрах до 100 мм используют пробковые краны со смазкой, при больших диаметрах – клиповые стальные задвижки.

Выходное давление из ГРП контролируют предохранительным запорным клапаном (ПЗК) и предохранительным сбросным клапаном (ПСК). ПЗК контролирует верхний и нижний предел, ПСК – только верхний.

Для бесперебойного снабжения потребителя газом при выходе из строя регулятора давления, замене, ремонте или осмотре оборудования узла регулирования предусматривают обводной газопровод (байпас). В указанных случаях регулирующую линию отключают, а газ подают по байпасу с ручным регулированием давления. Для надёжности и удобства ручного регулирования на байпасе устанавливают последовательно два отключающих устройства: кран и задвижку.

Для продувки газопровода до ГРП, газопровод и оборудование ГРП, а также сброса газа при ремонтах и замене оборудования ГРП предусматривают специальные продувочные газопроводы, которые выводят наружу в безопасные места для окружающих зданий и сооружений, но не менее чем на 1 м выше карниза здания ГРП.

Компоновка оборудования ГРП и ГРУ должна быть удобной для ремонта, монтажа, осмотра оборудования. Расстояние в свету между параллельными рядами оборудования следует принимать не менее 400 мм, а ширину основного прохода в помещении не менее 0,8 м. Прокладывать газопроводы в каналах пола не рекомендуется. Оборудование располагают в отдельно стоящем здании, выполненном из кирпича, размером 6 на 6 м. Пол в здании ГРП выполняют из несгораемых и не дающих искру материалов. Двери в здании ГРП должны открываться наружу. Освещение здания естественное (через окна) и искусственное (электрическое во взрывобезопасном исполнении). Здание отапливается от близрасположенных тепловых сетей или от местной отопительной установки. Температуру в помещении поддерживают не ниже 5 °С и контролируют комнатным термометром. Вентиляция естественная, обеспечивает трёхкратный обмен воздуха.

Для поглощения шума, возникающего при редуцировании давления газа, газопроводы покрывают специальной шумовиброизолирующей пастой или изолируют антикоррозионной битумно-резиновой изоляцией толщиной 20 мм.

5.1 Количество сетевых газорегуляторных пунктов (ГРП) для микрорайона "Б".

Учитывая значительное влияние количества и стоимости ГРП на общие технико-экономические показатели городской системы газоснабжения, производим расчет числа сетевых регуляторных пунктов. Количество ГРП (ГРУ), предназначенных для обслуживания бытовых приборов населения, находим по их оптимальным производительности $V_{\text{опт}}$ и радиусу действия $R_{\text{опт}}$.

Для ГРП (ГРУ) питающих сеть низкого давления оптимальная производительность (пропускная способность) находится в пределах 1000...3000 м³/ч, а оптимальный радиус действия составляет 400...800 метров.

Оптимальное количество сетевых ГРП определяется по формулам (с округлением до целых значений):

$$n = \frac{V_q^{\Gamma P \Pi}}{L_{ont}}$$
 (16)

где V_ч^{грп}- суммарный расчетный часовой расход газа потребителями, подключенными к сети низкого давления (соответствующие группы потребителей газа низкого давления).

$$n = \frac{F}{2(R_{ont})^2}$$
 (17)

где F – газифицируемая площадь, включая площадь проездов, м 2 , R $_{\text{опт}}$ – оптимальный радиус действия ГРП (ГРУ), м.

Для микрорайона "Б" часовой (расчетный) расход газа на ГРП составляет $V_u^{\Gamma P\Pi} = 2374,7 \text{ м}^3/4$. Тогда количество ГРП по формуле (16)

$$n = \frac{2374,7}{3000} = 0,79$$
 шт.

По формуле (17) количество ГРП (ГРУ)

$$n = \frac{1930600}{2 \cdot 800^2} = 1,51 \, \text{шT}.$$

Принимаем наибольшее значение n=2, но в курсовом проекте для простоты расчёта принимаем и делаем расчёт для 1 ГРП (ГРУ).

- 6 Проектирование наружных сетей системы городского газоснабжения
- 6.1 Гидравлический расчет тупиковых сетей среднего (высокого) давлений

Задачей данного расчета является определение диаметров газопроводов для найденных ранее расчетных часовых расходов газа, а также гидравлического сопротивления сети. Расчет производится с помощью номограмм.

Порядок расчёта.

- 1. Вычерчивается расчетная схема сети газопроводов: нумеруются участки, проставляются их длины, расчетные расхода газа каждым потребителем (рис. 1). После подбора диаметров участков их также вписывают на схему.
- 2. Определяются суммированием расчетные расхода газа каждого участка сети, начиная от конца тупиков по направлению к ГРП (ГРС).

Намечаются основное направление от ГРП (ГРС) до самого удаленного потребителя.

- 4. Составляется расчетная таблица 4. Длины участков L берутся из расчетной схемы. Расчетные длины определяются, как L_p=1,1L м и суммируются по основному направлению.
- 5. Задаются необходимым максимальным начальным давлением: для сетей среднего давления $P_H = 0.4$ МПа (высокого давления $P_H = 0.7$ МПа), необходимым минимальным конечным давлением у потребителей: для сетей среднего давления $P_K = 0.105$ МПа (высокого давления $P_K = 0.4$ МПа).
- 6. Определяется среднее значение величины A_{cp} , $M\Pi a^2/M$ на 1 м расчетного пути по формуле (18)

$$A_{cp} = \frac{P_{H}^2 - P_{K}^2}{\sum L_{p}}$$
 (18)

Предполагается, что располагаемый перепад давления затрачивается равномерно по всей магистрали.

- 7. Зная расчетный расход газа на участках и A_{cp} , по номограмме подбирают диаметры газопровода, определяют действительные значения A_{d} .
 - 8. Определяют давление газа в конце участка по формуле (19)

$$P_{\kappa} = \sqrt{P_{H}^2 - A_{\mu}L} \tag{19}$$

Все найденные значения $A_{\text{ср }(д)},\,d_y,\,$ вносят в расчетную таблицу 4.

Таблица 4. Гидравлический расчёт сети среднего (высокого) давления.

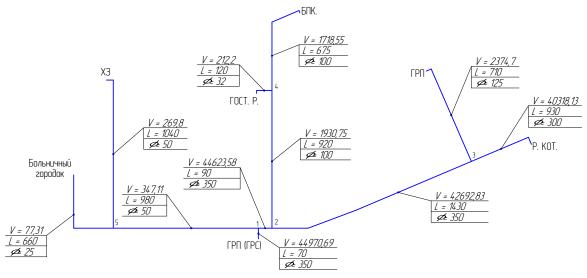
№ уч.	L, M	L _р , м	V,м³/ч	d _y , мм	А _д , МПа ² /(м10 ⁵)	А _д L _р , МПа ² ×10 ⁻⁵	Р _н , МПа	Р _к , МПа			
Расчёт основного направления ГРП - 1 - 2 - 3 - Р.КОТ.											
A _{cp} = 5,37428E-05											
ГРП - 1	70	77	44970,69	350	5,4	415,8	0,4	0,394768			
1 - 2	90	99	44623,58	350	5,4	534,6	0,394768	0,387938			
2 - 3	1430	1573	42692,83	350	5,2	8179,6	0,387938	0,262107			
3 - Кот	930	1023	40318,13	300	4,5	4603,5	0,262107	0,150549			
		2772									
		Расч	ёт отводов	от осн	овного направле	ния отвод 3 - ГІ	РΠ				
				A _{cp} =	7,38476E-05						
3 - ГРП	710	781	2374,7	125	4,2	3280,2	0,262107	0,189468			
		Расчёт	отводов о	A _{cp} =	вного направлени 7,94933E-05	ıя. Отвод 2 - 4 -	БПК				
0 4	000	4040	4000 75			0500.0	0.007000	0.055000			
2 - 4 4 - БПК	920 675	1012	1930,75	100 100	8,4	8500,8 5107.5	0,387938	0,255906			
4 - DI IN	6/5	742,5 1754,5	1718,55	100	/	5197,5	0,255906	0,116245			
			⊥ отводов от	основі	ного направления	я. Отвод 4 - ГО0	CT. P.				
				A _{cp} =	41,3E-5						
4 - Гост.	120	132	212,2	32	10	1320	0,255906	0,228666			
		Расчёт	г отводов с	т осно	вного направлен	ия. Отвод 1 - 5	- X3				
				A _{cp} =	6,5E-5						
1 - 5	980	1078	347,11	50	6,5	7007	0,394768	0,292869			
5 - X3	1040	1144	269,8	50	4,1	4690,4	0,292869	0,19715			
		2222									
		Расч	ёт отводов	от осн	овного направле	ния. Отвод 5 - 2	Х3				
				A _{cp} =	10,3E-5						
5 - Бол.	660	726	77,31	25	10	7260	0,292869	0,114769			

Расчёт основного направления

$$A_{cp} = \frac{0.4^2 - 0.105^2}{2772} = 5.37 \cdot 10^{-5} \, \frac{M\Pi a}{M}$$

По рис. 1 определяем длину участка ГРП - 1.

L = 70 M


$$L_p = 1,1.70 = 77 \text{ M}$$

По номограмме задаёмся диаметром 350 мм, и определяем значение $A_{\rm d}=5,4\cdot10\,{\rm M}\Pi{\rm a}^2/({\rm m}\cdot10^5).$

Тогда
$$P_{\scriptscriptstyle H}$$
 = 0,4 МПа, а $P_{\scriptscriptstyle K} = \sqrt{0,4^2-5,4\cdot77\cdot10^{-5}} = 0,394768$ МПа

Далее для последующих участков и отводов расчёт производится аналогично (см. таблицу 4).

Рис 1. Схема тупиковой сети среднего (высокого) давлений

Основное направление ГРП (ГРС) – 1 – 2 – 3 – Р.КОТ.

6.2 Гидравлический расчёт кольцевых сетей низкого давления.

Определяют расчётные длины участков по формуле:

$$Lp_{m-n} = \alpha \cdot L_{m-n} = 1, 1 \cdot L_{m-n},$$

где α -коэффициент учитывающий падение давления в местных сопротивлениях ;

L – длина участка по плану;

Определяют суммарные расчётные длины I и II направлений без учёта длин боковых ответвлений (перемычек).

Определяют среднюю удельную потерю давления на рассматриваемых направлениях по формуле:

$$h_{cp} = \frac{\Delta P}{\sum L p_i}$$
 ,

где ΔP – расчётный перепад давления в распределительных сетях низкого давления, определяется в соответствии с заданным давлением газа на выходе из ГРП, (таблица 1.1 /2/);

С помощью номограммы подбирают диаметры газопроводов, по ним находят действительные удельные потери давления h_{дm-n}. Определяют действительные потери давления по участкам и в целом по направлениям.

$$\Delta P_{\mu} = \Sigma h_i \cdot Lp_i$$

Производят сравнение действительной потери давления по основному направлению с расчётным перепадом:

$$\frac{(\Delta P - \Delta P_{_{\rm II}}^{\rm I(II)})}{\Delta P} \cdot 100\% \le 10\% ,$$

Определяют невязку расчёта по всем направлениям:

$$\frac{\left(\Delta P_{_{\mathcal{I}}}^{\mathrm{I}} - \Delta P_{_{\mathcal{I}}}^{\mathrm{II}}\right)}{\Delta P_{_{\mathcal{I}}}^{\mathrm{I}}} \cdot 100\% \leq 10\% ,$$

Давление в узлах сети:

$$P_{yam} = P_{rpn1} - \Delta P_{дrpn1-m}$$

Рассчитываются участки, лежащие между направлениями по разнице давлений на концах участков:

$$\Delta P_{m-n} = P_{y_{3 m(n)}} - P_{y_{3 n(m)}},$$

Допустимая удельная потеря давления на участке:

$$h_{_{\text{доп m-n}}} = \frac{\Delta P_{_{m-n}}}{L p_{_{m-n}}} \text{,}$$

Давление в конце участка:

$$\Delta P_{y_{3 m}} = P_{y_{3 n}} - \Delta P_{\mu_{m-n}}$$

Невязка:
$$\frac{(\Delta P_{_{y_{3\,m}}} - \Delta P_{_{y_{3\,m}}})}{\Delta P_{_{y_{3\,m}}}} \cdot 100\% \leq 10\% \; ,$$

Таблица 5. Расчёт расходов сети низкого давления.

Nº	L , м	Разбор газа	l M	Vуд	Pacx	од газа на	участках	, м ³ /ч
участка	L, W	i asoop iasa	L _p , м	• уд	V _n	$V_{\mathfrak{s}\kappa}$	V _T	V _o
1 - 2	390	одност.	195		48,59	26,72	0,00	26,72
2 - 3	340	одност.	170		42,36	23,30	48,59	71,89
3 - 4	290	одност.	145		36,13	19,87	36,13	56,00
4 - 5	290	одност.	145		36,13	19,87	0,00	19,87
1 - 6	490	одност.	245		61,05	33,58	0,00	33,58
2 - 7	490	двуст.	490		122,10	67,15	0,00	67,15
3 - 8	490	двуст.	490		122,10	67,15	163,21	230,37
4 - 9	490	двуст.	490		122,10	67,15	0,00	67,15
5 - 10	490	одност.	245		61,05	33,58	0,00	33,58
6 - 7	390	двуст.	390		97,18	53,45	90,95	144,40
7 - 8	340	двуст.	340		84,72	46,60	370,03	416,63
8 - 9	290	двуст.	290		72,26	39,74	345,12	384,86
9 - 10	290	двуст.	290		72,26	39,74	90,95	130,70
6 - 11	240	одност.	120		29,90	16,45	0,00	16,45
7 - 12	240	двуст.	240		59,80	32,89	0,00	32,89
8 - 13	240	двуст.	240		59,80	32,89	1157,45	1190,34
9 - 14	240	двуст.	240		59,80	32,89	0,00	32,89
10 - 15	240	одност.	120		29,90	16,45	0,00	16,45
11 - 16	240	одност.	120	0,25	29,90	16,45	0,00	16,45
12 - 17	240	двуст.	240		59,80	32,89	0,00	32,89
13 - 18	240	двуст.	240		59,80	32,89	1087,68	1120,57
14 - 19	240	двуст.	240		59,80	32,89	0,00	32,89
15 - 20	240	одност.	120		29,90	16,45	0,00	16,45
16 - 17	390	двуст.	390		97,18	53,45	82,23	135,68
17 - 18	340	двуст.	340		84,72	46,60	343,87	390,47
18 - 19	290	двуст.	290		72,26	39,74	318,95	358,70
19 - 20	290	двуст.	290		72,26	39,74	82,23	121,97
16 - 21	420	одност.	210		52,33	28,78	0,00	28,78
17 - 22	420	двуст.	420		104,66	57,56	0,00	57,56
18 - 23	420	двуст.	420		104,66	57,56	163,21	220,77
19 - 24	420	двуст.	420]	104,66	57,56	0,00	57,56
20 - 25	420	одност.	210		52,33	28,78	0,00	28,78
21 - 22	390	одност.	195]	48,59	26,72	0,00	26,72
22 - 23	340	одност.	170		42,36	23,30	48,59	71,89
23 - 24	290	одност.	145		36,13	19,87	36,13	56,00
24 - 25	290	одност.	145		36,13	19,87	0,00	19,87
ГРП - 13	40	без разб.	40		9,97	5,48	2364,73	2370,21
	ВСЕГ	0	9530		2374,70			

Таблица 6. Гидравлический расчёт сетей низкого давления.

No ver vo	L, м	L, м L _p , м	h _{ср} , Па	V _o , м ³ /ч	D, мм	Падение	давления	- P _{y3}
№ уч-ка			n _{cp} , Ha			На 1 м	На участке	
ГРП - 13	40	44	Направле	ение I (ГРП- 2370,21	13-8-3-2-1) 426		19,8	2980,2
13 - 8	240	264		1190,34	325	0,45 0,55	145,2	2854,8
8 - 3	490	539		230,37	159	0,55	485,1	2514,9
3 - 2	340	374	0,727	71,89	108	0,9	273,02	2726,98
2 - 1	390	429		26,72	76	0,73	261,69	2738,31
Z - 1	всего	1650		20,72	70	0,01	1184,81	2730,31
	BCCIO		I внение с рас	LIÄTULIM RAN	епалом па	рпениа	1104,01	
(/	ΔΡ-ΔΡ _д ')/ Δ			летным пер 184,81)* 100		1,2658333	33	
•	,			· · · · · · · · · · · · · · · · · · ·				
			Направле	ение II (ГРП-	-13-8-7-6-1)		
ГРП - 13	40	44		2370,21	426	0,45	19,8	2980,2
13 - 8	240	264		1190,34	325	0,55	145,2	2854,8
8 - 7	340	374	0,727	416,63	219	0,55	205,7	2794,3
7 - 6	390	429	0,727	144,40	133	0,9	386,1	2613,9
7 - 0					70	0.0	404.0	2568,8
6 - 1	490	539		33,58	76	0,8	431,2	2300,0
	490 всего	539 1650		33,58	76	0,8	1188	2300,0
		1650	внение с рас	·			1	2300,0
6 - 1		1650 Срав	•	·	епадом да		1	2500,0
6 - 1	всего	1650 Срав	•	чётным пер	епадом да	вления	1	2300,0
6 - 1	всего ΔΡ-ΔΡ _д ')/ <i>L</i>	1650 Cpas \P 100% =	(1200-	счётным пер 1188)* 100/1 Невязка	епадом да 200 =	вления	1188	2500,0
6 - 1	всего ΔΡ-ΔΡ _д ')/ <i>L</i>	1650 Cpas \P 100% =	•	счётным пер 1188)* 100/1 Невязка	епадом да 200 =	вления	1188	2300,0
6 - 1	всего ΔΡ-ΔΡ _д ')/ <i>L</i>	1650 Cpas \P 100% =	(1200-	счётным пер 1188)* 100/1 Невязка 1188) * 100/	епадом да 200 = 1184,81 =	вления 1 0,2685185	1188	2300,0
6 - 1 (Δ (ΔP _μ	всего ΔΡ-ΔΡ _д ')/ <i>L</i>	1650 Cpas \P 100% =	(1200-	счётным пер 1188)* 100/1 Невязка	епадом да 200 = 1184,81 =	вления 1 0,2685185	1188	
6 - 1 (ΔP _μ	BCEFO ΔΡ-ΔΡ _д ')/ Δ	1650 Cpas \P 100% =	(1200-	ечётным пер 1188)* 100/1 Невязка 1188) * 100/	епадом да 200 = 1184,81 = -13-8-3-4-5	вления 1 0,2685185	1188	2980,2
6 - 1 (Δ (ΔP _ρ	ΒCEΓΟ ΔΡ-ΔΡ _μ ')/ Δ Δ'-ΔΡ _μ ")/ ΔΙ 40	1650 Cpas ∆P 100% = P _A ' 100% =	(1200-	счётным пер 1188)* 100/1 Невязка 1188) * 100/2 ние III (ГРП 2370,21	епадом да 200 = 1184,81 = -13-8-3-4-5 426	вления 1 0,2685185) 0,45	1188	2980,2 2854,8
6 - 1 (ΔP _μ ΓΡΠ - 13 13 - 8	BCEFO ΔP-ΔP _A ')/ Δ (-ΔP _A ")/ ΔI 40 240	1650 Cpas \(\Delta\P\) 100% = \(\Delta_{A}'\) 100% = \(\delta\44\) 264	(1200-	счётным пер 1188)* 100/1 Невязка 1188) * 100/г ние III (ГРП 2370,21 1190,34	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325	вления 1 0,2685185) 0,45 0,55	1188 19 19,8 145,2	2980,2 2854,8
(ΔP _π)	BCEFO ΔP-ΔP _A ')/ Δ Δ'-ΔP _A ")/ ΔI 40 240 490	1650 Cpas AP 100% = P _A ' 100% = 44 264 539	(1200-	ние III (ГРП 2370,21 1190,34 230,37	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159	вления 1 0,2685185) 0,45 0,55 0,9	1188 19 19,8 145,2 485,1	2980,2 2854,8 2514,9 2649,1
(ΔP _p) (3 - 4	BCEFO ΔP-ΔP _A ')/ Δ ('-ΔP _A ")/ ΔF 40 240 490 290	1650 Cpas \(\Delta\P\) 100% = \(\Delta_{A}'\) 100% = \(\delta\) 44 264 539 319	(1200-	ние III (ГРП 2370,21 1190,34 230,37 56,00	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89	о,2685185) 0,45 0,55 0,9 1,1	19 19,8 145,2 485,1 350,9	2980,2 2854,8 2514,9
6 - 1 (ΔP _μ ΓΡΠ - 13 13 - 8 8 - 3 3 - 4	BCEFO ΔP-ΔP _A ')/ Δ Δ'-ΔP _A ")/ ΔI Δ'-ΔP _A ")/ ΔI 40 240 490 290 290	1650 Cpas AP 100% = P _A ' 100% = 44 264 539 319 319 1485	(1200-	ние III (ГРП 2370,21 1190,34 230,37 56,00 19,87	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5	о,2685185) 0,45 0,55 0,9 1,1 0,6	19 19,8 145,2 485,1 350,9 191,4	2980,2 2854,8 2514,9 2649,1
6 - 1 (ΔP _p ΓΡΠ - 13 13 - 8 8 - 3 3 - 4 4 - 5	BCEFO ΔP-ΔP _A ')/ Δ Δ'-ΔP _A ")/ ΔI Δ'-ΔP _A ")/ ΔI 40 240 490 290 290	1650 Cpas AP 100% = P _A ' 100% = 44 264 539 319 319 1485 Cpas	(1200- (1184,81- Направле 0,808	ние III (ГРП 2370,21 1190,34 230,37 56,00 19,87	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5	о,2685185) 0,45 0,55 0,9 1,1 0,6	19 19,8 145,2 485,1 350,9 191,4 1192,4	2980,2 2854,8 2514,9 2649,1
6 - 1 (ΔP _p ΓΡΠ - 13 13 - 8 8 - 3 3 - 4 4 - 5	BCEFO ΔP-ΔP _A ')/ Δ ('-ΔP _A ")/ ΔF 40 240 490 290 290 BCEFO	1650 Cpas AP 100% = P _A ' 100% = 44 264 539 319 319 1485 Cpas	(1200- (1184,81- Направле 0,808	счётным пер 1188)* 100/1 Невязка 1188) * 100/2 Ние III (ГРП 2370,21 1190,34 230,37 56,00 19,87	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5	о,2685185) 0,45 0,55 0,9 1,1 0,6 вления	19 19,8 145,2 485,1 350,9 191,4 1192,4	2980,2 2854,8 2514,9 2649,1
6 - 1 (ΔP _p TPΠ - 13 13 - 8 8 - 3 3 - 4 4 - 5	BCEFO ΔP-ΔP _A ')/ Δ ('-ΔP _A ")/ ΔF 40 240 490 290 290 BCEFO	1650 Cpas \(\text{Cpas} \)	(1200- (1184,81- Направле 0,808 внение с рас (1200-1	счётным пер 1188)* 100/1 Невязка 1188) * 100/2 Ние III (ГРП 2370,21 1190,34 230,37 56,00 19,87	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5 епадом да 1200 =	о,2685185) 0,45 0,55 0,9 1,1 0,6 вления	19 19 19,8 145,2 485,1 350,9 191,4 1192,4	2980,2 2854,8 2514,9 2649,1
6 - 1 (ΔP _p TPΠ - 13 13 - 8 8 - 3 3 - 4 4 - 5	BCEFO ΔP-ΔP _A ')/ Δ ('-ΔP _A ")/ ΔI 40 240 490 290 290 BCEFO	1650 Cpas \(\text{Cpas} \)	(1200- (1184,81- Направле 0,808 внение с рас (1200-1	счётным пер 1188)* 100/1 Невязка 1188) * 100/2 Ние III (ГРП 2370,21 1190,34 230,37 56,00 19,87 Счётным пер 192,4)* 100/2 Невязка 1188) * 100/2	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5 епадом да 1200 =	вления 1 0,2685185) 0,45 0,55 0,9 1,1 0,6 вления 0,63333333	19 19 19,8 145,2 485,1 350,9 191,4 1192,4	2980,2 2854,8 2514,9 2649,1
6 - 1 (ΔP _p TPΠ - 13 13 - 8 8 - 3 3 - 4 4 - 5	BCEFO ΔP-ΔP _A ')/ Δ ('-ΔP _A ")/ ΔI 40 240 490 290 290 BCEFO	1650 Cpas \(\text{Cpas} \)	(1200- (1184,81- Направле 0,808 внение с рас (1200-1	счётным пер 1188)* 100/1 Невязка 1188) * 100/2 Ние III (ГРП 2370,21 1190,34 230,37 56,00 19,87 счётным пер 192,4)* 100/ Невязка	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5 епадом да 1200 =	вления 1 0,2685185) 0,45 0,55 0,9 1,1 0,6 вления 0,63333333	19 19 19,8 145,2 485,1 350,9 191,4 1192,4	2980,2 2854,8 2514,9 2649,1
(ΔP _p)	BCEFO ΔP-ΔP _A ')/ Δi 40 240 490 290 BCEFO ΔP-ΔP _A ')/ Δi ('-ΔP _A ")/ Δi	1650 Cpas AP 100% = 24 264 539 319 319 1485 Cpas AP 100% =	(1200- (1184,81- Направле 0,808 внение с рас (1200-1	ние IV (ГРП-	епадом да 200 = 1184,81 = -13-8-3-4-5 426 325 159 89 75,5 епадом да 1200 = 1192,4 =	вления 1 0,2685185) 0,45 0,55 0,9 1,1 0,6 вления 0,63333333	19 19,8 145,2 485,1 350,9 191,4 1192,4	2980,2 2854,8 2514,9 2649,1 2808,6

o 40 l	000		ı	400.70	100	l a 75	000.05	1 0700 75
9 - 10	290	319		130,70	108	0,75	239,25	2760,75
10 - 5	490	539		33,58	76	0,95	512,05	2487,95
	всего	1485					1107,7	
				счётным пер				
(2	ΔP-ΔP _д ')/ Δ	∆P 100% =	(1200-1	107,7)* 100/	1200 =	7,6916666	67	
				Невязка				
(ΔΡ _д	'-ΔP _д ")/ ΔΙ	Рд' 100% =	(1192,4-1	107,7) * 100/	/1192,4 =	7,1033210	33	
			Jonophou	40 V (FDF 12	10 22 22	24)		
ГРП - 13	40	44	таправлени	1е V (ГРП-13 2370,21	426	0,45	19,8	2980,2
13 - 18	240	264		1120,57	325	0,45	118,8	2881,2
18 - 23	420	462		220,77	159	0,8	369,6	2630,4
23 - 22	340	374	0,763	71,89	108	0,75	280,5	2719,5
22 - 21	390	429		26,72	76	0,75	321,75	2678,25
	всего	1573					1110,45	
		Срав	внение с рас	чётным пер	епадом да	вления		1
(/	ΔΡ-ΔΡ.')/ Δ	 ∆P 100% =	(1200-1	110,45)* 100	/1200 =	7,4625		
	A /			Невязка		,		
/AD	' A D !! \/ A I	7.14000/	(4440 45 4		///////////////////////////////////////	0.0470470		
(ΔΡ _д	[-ΔΡ _д ")/ ΔΙ	P _д 100% =	(1110,45-1	107,7) * 100/	1110,45 =	0,2476473	5	
		L	lanannauu	ıe VI (ГРП-13	2.10.17.16	24\		
ГРП - 13	40	44	іаправлени	2370,21	426	0,45	19,8	2980,2
13 - 18	240	264		1120,57	325	0,45	118,8	2881,2
18 - 17	340	374		390,47	219	0,5	187	2813
17 - 16	390	429	0,763	135,68	133	0,8	343,2	2656,8
16 - 21	420	462		28,78	75,5	0,95	438,9	2561,1
	всего	1573			· · · · · · · · · · · · · · · · · · ·		1107,7	
		Срав	внение с рас	чётным пер	епадом да	вления	1	
(/	ΔΡ-ΔΡ _д ')/ Δ	∆P 100% =	(1200-1	107,7)* 100/	1200 =	7,6916666	67	
				Невязка				
(ΔP ₁	'-ΔΡ _д ")/ ΔΙ	P _д ' 100% =	(1110,45-1	107,7) * 100/	1110,45 =	0,2476473	5	
		н	аправлени	e VII (ГРП-1	3-18-23-24	-25)		
ГРП - 13	40	44		2370,21	426	0,45	19,8	2980,2
13 - 18	240	264		1120,57	325	0,45	118,8	2881,2
18 - 23	420	462	0,852	220,77	159	0,8	369,6	2630,4
23 - 24	290	319	0,002	56,00	89	1,2	382,8	2617,2
24 - 25	290	319		19,87	70	0,6	191,4	2808,6
	всего	1408					1082,4	
		Срав	нение с рас	чётным пер	епадом да	вления		
(/	ΔP-ΔP _д ')/ Δ	∆P 100% =	(1200-1	082,4)* 100/	1200 =	9,8		
· · · · · ·				Невязка				

(Ді д	'-ΔΡ _д ")/ ΔΓ	д 10070 =	(1002,11	107,7) * 100/		2,2840119		
FDE 40	40		аправление	•			40.0	00000
ГРП - 13	40	44		2370,21	426	0,45	19,8	2980,2
13 - 18	240	264		1120,57	325	0,45	118,8	2881,2
18 - 19	290	319	0,852	358,70	219	0,425	135,575	2864,425
19 - 20 20 - 25	290 420	319 462		121,97	114	1,25 0,95	398,75 438,9	2601,25 2561,1
20 - 25	всего	1408		28,78	75,5	0,95	1111,825	2501,1
	BCelO		<u> </u> знение с рас	<u> </u> чётным пер	епадом дав	<u> </u> вления	1111,023	
(Δ	ΔΡ-ΔΡ _α ')/ Δ	•		11,825)* 100			67	
<u> </u>	,			Невязка				
(ΔP _д	'-ΔΡ _д '')/ ΔϜ	Р _д ' 100% =	:(1111,825-1	082,4) * 100/	1111,825 =	2,6465495	92	
7 - 2	490	539	0,124898	67,15	133	0,2	107,8	2686,5
<u> </u>						l	<u>'</u>	1
			· · · · · · · · · · · · · · · · · · ·			T		1
9 - 4	490	539	0,2959184	67,15	108	0,6	323,4	2485,2
		(ΔF	P_{y3} - ΔP_{y3})/ ΔP	_{y3} ' 100% =	6,59504265	3		
17 - 22	420	462	0,202381	57,56	114	0,4	184,8	2628,2
1		(ΔΓ	P _{y3} -ΔP _{y3})/ ΔΡ	y ₃ ' 100% =	7,03142835	4		
19 - 24	420	462	0,535119	57,56	108	0,5	231	2633,425
10 21	.20		P _{y3} -ΔP _{y3})/ ΔP			l		2000, 120
		<u> </u>	<u> </u>	<u>, </u>				
T				Перемычки	1			1
6 - M	240	264	1,6333333	16,45	57	1,2	316,8	2297,1
16 - M	240	264	1,6625	16,45	57	1,2	316,8	2340
		(ΔF	P_{y3} - ΔP_{y3})/ ΔP	_{y3} ' 100% =	1,83333333	3		
7 - M	240	264	0,4083333	32,89	89	0,4	105,6	2580,9
17 - M	240	264	0,7	32,89	88,5	0,5	132	2496,2
				,	3,28180092	<u> </u>		,
2.14	0.40	004	4.005	00.00	70	1.05	000	0455.0
9 - M	240	264	1,225	32,89	70	1,25	330	2155,2
19 - M	240	264	0,875	32,89	76	1,1	290,4	2343,025
		(ΔΗ	Ρ _{y3} -ΔΡ _{y3})/ ΔΡ	100% =	0,01634639			
10 - M	240	264	1,9395833	16,45	57	1,25	330	2157,95
20 - M	240	264	1,6625	16,45	57	1,25	330	2231,1
		(45	Ρ _{уз} -ΔΡ _{уз})/ ΔΡ	1.4000/	07005470			

6.3 Гидравлический расчёт дворовых газопроводов

Расчётные расходы газа по участкам определяются по номинальным расходам газа приборами. Количество и ассортимент газовых приборов в одной секции жилого дома – n (П-4) и m (П-2). Расчётный расход газа определяется по формуле:

$$V_{_{\kappa\text{-}i}} = K_{_{0\,n+m}}^{_{n-4}} \cdot n \cdot \frac{q^{_{\Pi^{-}4}}}{Q_{_{H}}^{^{p}}} + K_{_{0\,n+m}}^{^{n-2}} \cdot m \cdot \frac{q^{_{\Pi^{-}2}}}{Q_{_{H}}^{^{p}}} ,$$

где q^{n-4} и q^{n-2} – номинальная теплопроизводительность четырёх и двух конфорочных плит, согласно /3/;

 $K_{\text{о n+m}}^{n-4}, K_{\text{о n+m}}^{n-2}$ - коэффициенты одновременности для указанных ассортиментов газовых приборов, но для общего их количества, которые питают участок, принимается согласно СНиП /1/;

Таблица 7. Расчёт расходов газа дворовой сети газоснабжения

Nº	Приборы	I/O FIMILO OT DO	кооффиционт	Pacxo	од газа	
участка	в квартирах	количество квартир	коэффициент одновременности	на все квартиры	расчетный	
4 - 3	П-4	15	0,24	3,704092	2 7040040	
4 - 3	П-2	0	0	0	3,7040919	
3 - 2	П-4	20	0,235	4,835898	6 5071750	
3-2	П-2	10	0,263	1,691278	6,5271759	
1 - 2	П-4	10	0,254	2,613443	4,1568143	
1 - 2	П-2	5	0,48	1,543372	4,1306143	
2 - 5	П-4	40	0,227	9,342543	11,676893	
2 - 3	П-2	15	0,242	2,33435	11,070093	
5 - 6	П-4	120	0,208	25,6817	31,802137	
5-0	П-2	45	0,2115	6,120433	31,002137	
7 - 8	П-4	15	0,24	3,704092	3,7040919	
7 - 0	П-2	0	0	0	3,7040919	
8 - 9	П-4	20	0,235	4,835898	6,5271759	
0-9	П-2	10	0,263	1,691278	0,5271759	
10 - 9	П-4	10	0,254	2,613443	4.4500440	
10 - 9	П-2	5	0,48	1,543372	4,1568143	
9 - 5	П-4	40	0,227	9,342543	11 676902	
9-5	П-2	15	0,242	2,33435	11,676893	
11 - 12	П-4	15	0,24	3,704092	3,7040919	
11-12	П-2	0	0	0	3,7040919	
12 - 13	П-4	20	0,235	4,835898	6 5071750	
12 - 13	П-2	10	0,263	1,691278	6,5271759	
14 12	П-4	10	0,254	2,613443	4 1560140	
14 - 13	П-2	5	0,48	1,543372	4,1568143	
12 5	П-4	40	0,227	9,342543	11 676902	
13 - 5	П-2	15	0,242	2,33435	11,676893	

Таблица 8. Гидравлический расчёт дворовой сети газоснабжения.

Nº	Длина		hcp	V	Диаметр	Падение давления				
	L	Lp		-	Д	на 1м	на уч- ке			
4 - 3	21	23,1	1,6234	3,704092	38x3	0,9	20,79			
3 - 2	14	15,4		6,527176	42,3x3,2	1,4	21,56			
2 - 5	49	53,9	1,6	11,67689	48x3,5	2	107,8			
5 - 6	56	61,6		31,80214	75,5x4	1,5	92,4			
		154					242,55			
(ΔΙ	Р-ΔРд')/ Δ	P 100% =	(250 -	- 242,55)/ *	100/250 =	2,98				
11 - 12	21	23,1	0;	3,704092	33,5x3,2	2,25	51,975			
12 - 13	14	15,4	3820	6,527176	42,3x3,2	1,4	21,56			
13 - 5	32,2	35,42	ώ,	11,67689	48x3,5	2	70,84			
		73,92					144,375			
(ΔΙ	(ΔΡ-ΔΡ _Д ')/ ΔΡ 100% = (150,15 - 144,375) * 100/250 3,846153846									

6.4 Расчёт внутридомовой сети газоснабжения.

Газопровод вводят в жилые здания через нежилые помещения, доступные для осмотра труб. Разводящие газопроводы прокладывают по верху стен первого этажа. Газовые стояки прокладывают в кухнях, местных клетках или коридорах. Нельзя прокладывать стояки в жилых помещениях, ванных комнатах и санитарных узлах. На каждом ответвлении к стояку на первом этаже устанавливают отключающие краны. Краны ставят также перед каждым газовым прибором. Газопроводы прокладывают без уклона. Газопроводы пересекающие фундаменты, перекрытия, лестничные площадки, стены и перегородки, следует заключать в стальные футляры. Установку газовых плит в жилых домах следует предусматривать в помещениях кухонь высотой не менее 2,2 м., имеющих окно с форточкой, вытяжной вентиляционный канал и естественное освещение. В квартирах установлены 4-х конфорочные плиты.

Расчётные расходы газа на участках сети определяются по номинальным расходам газа приборами:

$$V = K_{o-15}^{n-4} \cdot n \cdot \frac{q^{n-4}}{Q_{n}^{p}},$$

где q^{п-4}= 11,3 кВт – номинальная теплопроизводительность 4-х конфорочной плиты;

Фактическую длину L определяют по чертежу здания. Расчётные длины определяются по формуле:

$$L_p = L(1 + \frac{a}{100}),$$

где а – процентовая надбавка;

Диаметры внутридомовых газопроводов с учётом ограничительного сортамента должны быть не менее 15 мм.

Гидростатическое давление для вертикальных участков:

$$H_r = \pm Z (1,293 - \rho_0^2),$$

где Z – разность абсолютных отметок начала и конца рассчитываемого участка газопровода, м;

Если ΔP д $\leq \Delta P$, то гидравлический расчёт выполнен верно;

Таблица 9. Расчёт расходов внутридомовой сети газоснабжения.

Nº	Ассорт. приб.	Кол-во кв.	Коэф. одновр.	Расч. расход		
1 - 3	П-2	1	1	0,64307152		
3 - 4	П-2	2	0,84	1,08036015		
4 - 5	П-2	3	0,73	1,40832663		
5 - 6	П-2	5	0,48	1,54337164		
6 - 7	П-2	5	0,48	4,15681429		
	П-4	10	0,254	4,10001429		
7 - 20	П-2	5	0,48	4,15681429		
	П-4	10	0,254	4,15681429		
8 - 10	П-4	1	1	1,02891443		
10 - 11	П-4	2	0,65	1,33758876		
11 - 12	П-4	3	0,45	1,38903448		
12 - 13	П-4	5	0,29	1,49192592		
13 - 7	П-2	5	0,48	4,15681429		
	П-4	10	0,254			
7 - 20	П-2	5	0,48	4 15601400		
	П-4	10	0,254	4,15681429		
14 - 16	П-4	1	1	1,02891443		
16 - 17	П-4	2	0,65	1,33758876		
17 - 18	П-4	3	0,45	1,38903448		
18 - 19	П-4	5	0,29	1,49192592		
78	П-2	5	0,48	4,15681429		
	П-4	10	0,254			
7 - 20	П-2	5	0,48	4 45604400		
7 - 20	П-4	10	0,254	4,15681429		

Таблица 10. Гидравлический расчёт внутридомовой сети газоснабжения.

Nº	Расчетный расход	Длина	Надб	Lp	hcp	Диаметр	hд	hд*Lp	Нг	hд*Lp Нап.Г.		
Основное направление 20 - 7 - 6 - 1												
1 - 2	0,64307152	1,5	450	8,25	35	15	1,2	9,9	0,7185	9,1815		
2 - 3	0,64307152	3	20	3,6	350/38,275= 9,14435	15	1,2	4,32	1,437	2,883		
3 - 4	1,08036015	3	20	3,6		15	2,25	8,1	1,437	6,663		
4 - 5	1,40832663	3	20	3,6		15	3,75	13,5	1,437	12,063		
5 - 6	1,51764878	3	20	3,6		15	6	21,6	1,437	20,163		
6 - 7	3,23976333	7,6	25	9,5		15	25	237,5	0	237,5		
7 - 20	4,05111275	4,9	25	6,125	35(20	8	49	0	49		
				38,275						337,4535		
Ответвление 20 - 7 - 13 - 8												
8 - 9	1,02891443	1,5	450	8,25	Ω	15	2	16,5	0,7185	15,7815		
9 - 10	1,02891443	3	20	3,6	11,905	15	2	7,2	1,437	5,763		
10 - 11	1,33758876	3	20	3,6	7	15	3	10,8	1,437	9,363		
11 - 12	1,38903448	3	20	3,6	11	15	3,5	12,6	1,437	11,163		
12 - 13	1,4404802	3	20	3,6	350/29,4=	15	4,5	16,2	1,437	14,763		
13 - 7	4,15681429	0,5	25	0,625		15	37	23,125	0	23,125		
7 - 20	4,15681429	4,9	25	6,125		20	8	49	0	49		
				29,4						128,9585		
	Ответвление 20 - 7 - 19 - 14											
14 - 15	1,02891443	1,5	450	8,25	2	15	2	16,5	0,7185	15,7815		
15 - 16	1,02891443	3	20	3,6	10,972	15	2	7,2	1,437	5,763		
16 - 17	1,33758876	3	20	3,6		15	3	10,8	1,437	9,363		
17 - 18	1,38903448	3	20	3,6		15	3,5	12,6	1,437	11,163		
18 - 19	1,4404802	3	20	3,6	350/31,9=	15	4,5	16,2	1,437	14,763		
19 - 7	4,15681429	2,5	25	3,125	0/3	15	37	115,63	0	115,625		
7 - 20	4,15681429	4,9	25	6,125	35	20	8	49	0	49		
				31,9						221,4585		

7 Защита газопровода от коррозии

Защита газопроводов от коррозии разделяется на изолирование трубопроводов от прилегающих грунтов и ограничение проникновения через изоляционное покрытие блуждающих токов в трубопровод (пассивная защита), а также на создание защитного потенциала на трубопроводе по отношению к окружающей среде (электрическая защита).

Пассивные методы защиты заключаются в изоляции газопровода. К изоляционным материалам предъявляют ряд требований из которых следующие: монолитность покрытия, водонепроницаемость, хорошее прилипание к материалу, химическая стойкость в грунтах, высокая механическая прочность при переменных температурах, наличие диэлектрических свойств.

К активным методам защиты относят катодную и протекторную защиты и дренаж, которые защищают газопровод от электрокоррозии, возникающей при наличии блуждающих токов, разностью потенциалов между трубопроводами и окружающей средой, а также между трубопроводами и всевозможными источниками электромагнитных колебаний — силовых колебаний, рельсов железнодорожного транспорта и трамвайных линий, заземления оборудования и т. п.

При проектировании газоснабжения данного района были использованы следующие виды защиты от коррозии:

- пассивный, с весьма усиленной изоляцией газопроводов;
- активный, катодной способ защиты;
- активный, с использованием дополнительного заземления;
- защита от атмосферной коррозии.

При проектировании в городской зоне предусмотрена усиленная защита ввиду большого количества источников блуждающих токов, повышенной агрессивности почвы, наличие большого количества механического воздействия от внешних нагрузок.

8 Подбор регуляторов давления

Регуляторы давления выбираются по расчётному (максимальному часовому) расходу газа при требуемом перепаде давления. Пропускная способность таких регуляторов определяется по паспортным данным завода – изготовителя.

Если условия работы регуляторов давления отличаются от паспортных, то делают пересчёт производительности на рабочие условия. Расчёт производится по следующим формулам:

при другой плотности газа
$$V = \frac{0.855 V_{\odot}}{\sqrt{\rho}}$$
 , м³/ч

при скорости истечения газа через седло, меньшей критической ($p_2/p_1 \ge 0,5$) и $\rho \neq \rho_T$

$$V = 0.855 V_{\dot{O}} \cdot \sqrt{\frac{\Delta p p_2}{\Delta p_{\dot{O}} \rho p_{2\dot{O}}}}$$

а для
$$\rho=\rho_{\rm T}=0.73~{\rm kr/m^3}$$
 $V=V_{\dot{O}}\cdot\sqrt{\frac{\Delta pp_2}{\Delta p_{\dot{O}}p_{2\dot{O}}}}$

при критической скорости истечения газа через седло ($p_2/p_1 < 0.5$) и $\rho \neq \rho_T$

$$V = \frac{0.855 V_{o} p_1}{p_{1o} \sqrt{\rho}}$$

а для $\rho = \rho_T = 0.73 \text{ кг/м}^3$

где индекс «т» — табличное значение параметра;

V и V_T — пропускная способность регулятора, м³/ч;

 ρ и ρ_{T} — плотность газа при нормальных условиях, кг/м 3 ;

 Δ р и Δ рт — перепад давления в регуляторе, МПа;

 p_1 и $p_{1\tau}$ — абсолютное входное давление газа, МПа;

 p_2 и $p_{2\tau}$ — абсолютное выходное давление газа, МПа.

Нормальная работа регулятора обеспечивается при условии, когда его максимальная пропускная способность V_{max} не более 80, а минимальная V_{min} не менее 10% от расчетной пропускной способности V при заданных входном p_1 и выходном p_2 давлении, т. е. должны выполняться условия

$$0,1V \le V_p \le 0,8V.$$

Выбираем регулятор РДУК2H-100, $D_y=100$ мм, диаметр седла=50мм, пропускная способность при входном давлении 0,3 МПа составляет 2840 м 3 /ч:

Абсолютное входное давление газа, МПа $p_1 = 0.189 + 0.1 = 0.289$ МПа.

Абсолютное выходное давление газа, МПа p_2 = 0,003+0,1=0,103 МПа.

Тогда $p_2/p_1 = 0,103/0,289 = 0,356$

Следовательно
$$V = \frac{0.855 \cdot V_T \cdot p_1}{p_{1T} \cdot \sqrt{\rho}} = \frac{0.855 \cdot 2840 \cdot 0.289}{0.4 \cdot \sqrt{0.814}} = 1944,5$$

Должно выполняться условие

 $0,1 \ 1944,5 < V_p < 0,8 \ 1944,5$

194,45 < 2374,7 < 1555,6 - не подходит, тогда выбираем регулятор РДУК2Н– 100, D_y =100мм, диаметр седла=70мм, пропускная способность при входном давлении 0,3 МПа составляет 5650 м 3 /ч:

Следовательно
$$V = \frac{0,855 \cdot V_{\text{T}} \cdot p_{\text{1}}}{p_{\text{1T}} \cdot \sqrt{\rho}} = \frac{0,855 \cdot 5650 \cdot 0,289}{0,4 \cdot \sqrt{0,814}} = 3868,5$$

Должно выполняться условие

 $0,1 3868,5 < V_p < 0,8 3868,5$

386,85 < 2374,7 < 3094,8 - подходит, выбираем регулятор РДУК2Н-100.

9 Подбор фильтров

Газовые фильтры предназначены в ГРП (ГРУ) для очистки транспортируемого по газопроводам газа от пыли, ржавчины и других механических примесей, которые приводят к преждевременному износу газопроводов, запорной и регулирующей арматуры, нарушают работу контрольно-измерительных и регулирующих приборов. Если расстояние от источника газа до потребителя более 1 км, то надо устанавливать фильтр.

Необходимая степень очистки фильтром газового потока обеспечивается при ограниченных скоростях газа, определяемых максимально допустимым перепадом давления в фильтрующем элементе (кассете, сетке), который не должен превышать для сетчатых фильтров 5000, для волосяных 10000, на новом фильтре, а также после их чистки или промывки, т. е. на чистой кассете (сетке), соответственно 2500 и 5000 Па.

С регуляторами давления РДУК применяются фильтры волосяные (ФВ) и фильтры кассетные сварные (ФГ). Фильтры подбирают по пропускной способности по таблице 7.20 Стаскевич. Если плотность газа ρ , расчетный

перепад давления Δp и абсолютное давление p отличаются от табличных (ρ_{T} =0,73 кг/м³, Δp_{T} и p_{T}), то пропускную способность определяют по формуле

$$V = 0.855V_T \sqrt{\frac{\Delta p \cdot p}{\Delta p_T \cdot p_T \cdot \rho}}$$

Из таблицы 7.20 Стаскевич выбираем фильтр по ближайшему расходу газа (пропускной способности): ФВ-200, пропускная способность равна 4900 м³/ч при входном давлении 0,3 МПа.

Абсолютное входное давление $p = 0,1+0,308=0,408 \text{ M}\Pi a$.

Плотность газа ρ =0,814 кг/м³.

Расчетный перепад давления ∆р = 5 кПа.

Расчетный перепад для волосяного фильтра из таблицы Δp_{τ} = 5 кПа.

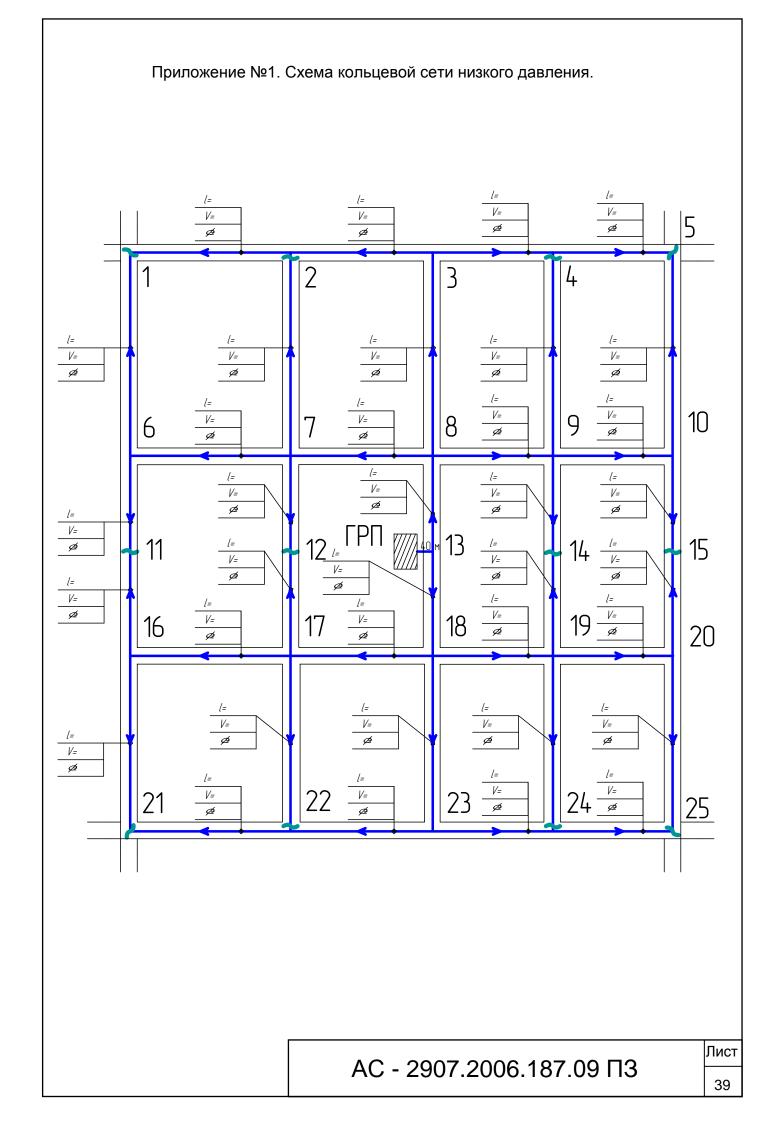
Тогда пропускная способность фильтра

$$V = 0.855 \cdot 4900 \cdot \sqrt{\frac{0.005 \cdot 0.408}{0.005 \cdot 0.4 \cdot 0.814}} = 4689,7 \text{ m}^3/\text{ч}.$$

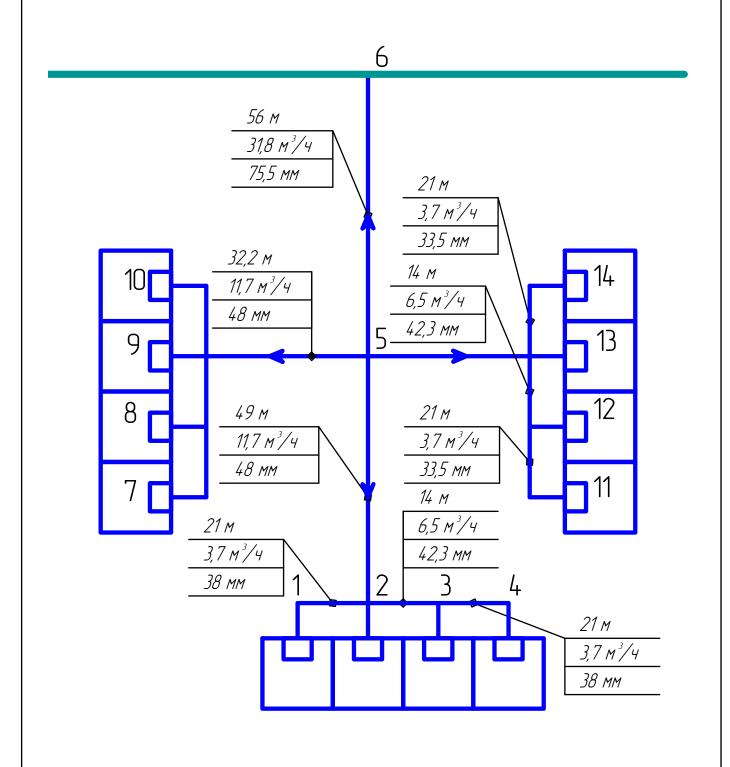
Принимаем к установке фильтр волосяной ФВ-200.

10 Выбор предохранительно-запорного клапана

Промышленность выпускает два типа ПЗК: ПКН и ПКВ. Первый следует применять в случаях, когда после ГРП или ГРУ поддерживается низкое давление, второй - среднее. Габариты и тип клапана определяются типом регулятора давления. ПЗК обычно выбирают с таким же условным диаметром, как и регулятор.


Определен тип регулятора РДУК2Н-100. Этот регулятор имеет условный диаметр 100 мм. Следовательно, ПЗК будет или ПКН-100.

11 Выбор предохранительно-сбросного клапана


Предохранительно-сбросной клапан подбирается по пропускной способности регулятора давления. Пропускная способность ПСК должна составлять не менее 10 % от пропускной способности регулятора давления или не менее пропускной способности наибольшего из клапанов. Выбираем ПСК-100H/0,1.

Библиографический список

- 1. СНиП 2.04.08 87*
- 2. Ионин А.А Газоснабжение.- М.: Стройиздат, 1989.- 439с.
- 3. СНиП 23-01-99*
- 4. Стаскевич Н.Л., Северинец Г.Н., Вигдорчик Д.Я. Справочник по газоснабжению и использованию газа.- Л.: Недра, 1990.- 762с.

Приложение №2. Схема дворовой сети низкого давления.

$$1MM - 1,4M$$

АС - 2907.2006.187.09 ПЗ

40