Содержание

Введение	5
1 Исходные данные	6
2 Описание системы отопления	6
3 Тепловой расчет отопительных приборов	8
4 Определение естественного циркуляционного давления	14
5 Гидравлический расчет системы отопления по линейным потерям давления	15
6 Выбор оборудования теплового пункта	24
6.1 Подбор котлов для системы отопления	24
6.2 Подбор циркуляционного насоса	24
7 Спецификация оборудования и материалов	28
Литература	29
Приложение 1 – Расчетная схема системы отопления	30
Приложение 2 – Эпюра потерь давления на участках магистрали ОПК	31

Изм.	Лист	№ докум.	Подпись	Дата

Введение

Состояние воздушной среды в помещениях определяется совокупностью тепловлажностного и воздушного режимов помещения.

На тепловой режим здания оказывают влияние параметры и процессы, определяющие тепловую обстановку в помещениях Тепловая обстановка помещения зависит от ряда факторов: температуры, подвижности и влажности воздуха, наличия струйных течений, различия параметров воздуха в плане и по высоте помещения, лучистых тепловых потоков, зависящих от температуры, размеров, радиационных свойств поверхности и их расположения.

Воздушный режим здания представляет собой процессы воздухообмена между помещениями и наружным воздухом, включающие перемещение воздуха внутри помещений, движение воздуха через ограждения, проёмы, воздуховоды и обтекание здания потоком воздуха.

Для обеспечения требуемых внутренних условий в помещении служат системы отопления, вентиляции и кондиционирования воздуха.

Системы отопления создают и поддерживают необходимые температуры воздуха в помещениях в холодный период года.

Системы вентиляции служат для подачи в помещения чистого воздуха и удаления из них загрязнённого. При этом температура внутреннего воздуха не должна изменяться.

Системы кондиционирования воздуха предназначены для создания и автоматического поддержания в помещениях температуры, относительной влажности, подвижности воздуха, а также его чистоты и определённого газового состава независимо от наружных метеорологических условий.

В настоящей курсовой работе рассчитана система отопления одноквартирного жилого здания с местным источником теплоснабжения.

Система отопления должна обеспечивать равномерный нагрев воздуха отапливаемых помещений в течение всего отопительного периода, гидравлическую и тепловую устойчивость, возможность регулирования, допустимый уровень шума, удобство в эксплуатации и при ремонте, а также не должна нарушать интерьера здания.

Изм.	Лист	№ докум.	Подпись	Дата

1 Исходные данные для проектирования

Проектирование системы отопления производится для жилого трехэтажного здания. Основные данные взяты из курса "Строительная теплотехника" и "Теоретические основы создания микроклимата".

- 1. Город постройки здания Челябинск.
- 2. Климатические характеристики района постройки:
 - температура воздуха наиболее холодной пятидневки обеспеченностью 0.92, $t_{H} = -34^{0}$ C;
 - средняя температура воздуха периода со средней суточной температурой воздуха $\leq 8^{0}$ C $t_{on} = -4,5^{0}$ C;
 - продолжительность отопительного периода $Z_{on} = 218 \, \mathrm{cyr}, \ \omega = 6,2 \, \mathrm{m/c}$ январь.
- 3. Конструктивные особенности здания:

Запроектировано здание с жилым цокольным этажом, отметка пола, которого на 1,5 м ниже уровня земли, с неотапливаемым чердаком.

- Толщина наружных ограждающих конструкций $\delta = 300$ мм; перекрытия над холодным неотапливаемым подвалом $\delta = 600$ мм.
- Высота этажа: h = 3,5 м.

2 Описание принятой схемы отопления

Учитывая конструктивные особенности данного здания, а именно: цокольный этаж отличается конструкцией от $1^{\text{ого}}$ и $2^{\text{ого}}$, необычный план здания, множество наружных углов. Поэтому в данном случае наиболее эффективной будет горизонтальная двухтрубная система отопления с нижней разводкой обеих магистралей.

Источником теплоснабжения является местная котельная. Подающая и обратная магистрали проложены, на отметке -1,7 м.

В качестве теплоносителя используется вода. Вода обладает большой теплоемкостью, это позволяет передавать большое количество теплоносителя

						Лист
					2907.2007.462.00 ПЗ	6
Изм.	Лист	№ докум.	Подпись	Дата		O

при небольшом расходе. К недостаткам принятого теплоносителя можно отнести большое гидростатическое давление в системе. Теплоноситель подается в систему отопления с параметрами $t_1=85^{\circ}\mathrm{C}$, а возвращается в котельную с $t_0=60~\mathrm{^{\circ}C}$.

Для проектируемой системы отопления в качестве отопительных приборов использованы чугунные радиаторы МС-140-108 для отопления жилых помещений. Чугунные радиаторы устанавливаются в жилых помещениях под оконным проемом, перекрываются подоконной доской, теплотехнические качества высоки, так как происходит свободное омывание конвективными восходящими потоками воздуха. Схема подключения отопительных приборов к ветвям — «сверху-вниз» разносторонняя, так как коэффициент теплопередачи прибора в данной схеме выше коэффициентов теплопередачи других схем подключения. Подводка к отопительному прибору осуществляется с помощью одного гнутого отвода под углом 90°, диаметр подводки принят 15 мм, высота по вертикали 0,7 м, длина по горизонтали 0,5 м.

В системе отопления запроектированы стальные водогазопроводные трубы (обыкновенные) по ГОСТ 3262-75* диаметром 15 – 50мм. На трубопроводах устанавливается муфтовая арматура.

Магистрали проложены с уклоном 0.003 в сторону теплового пункта здания.

В запроектированной отопительной системе удаление воздуха производится через воздушные краны, установленные на отопительных приборах (воздушный кран типа Маевского $D_v=15$ мм).

При проектировании системы компенсация удлинения труб, происходит естественным образом, благодаря множеству поворотов под углом 45^0 , 90^0 , 135^0 . В местах пересечения междуэтажных перекрытий трубы заключают в гильзы из обрезков труб большего диаметра, что создает возможность их свободного перемещения при удлинении.

Для опорожнения системы отопления запроектирована дренажная линия. Все стояки присоединяются к дренажной линии через спускной кран, а так же на дренажной линии устанавливается общий запорный вентиль.

Тепловая изоляция предусмотрена при прокладке трубопроводов от отдельно стоящей котельной до здания для уменьшения потерь тепловой энергии. В качестве изоляции принимается полотно холстопрошивное. Толщину слоя изоляции определяет расчет, исходя из термического сопротивления теплопередачи материала не менее 0.86 Bt/(м²оС) для труб диаметром 25мм и 1.22 Bt/(м²оС) для труб диаметром более 25мм, что обеспечивает КПД не менее 75%.

Изм.	Лист	№ докум.	Подпись	Дата

3 Тепловой расчет отопительных приборов

Расчетная схема приведена в приложении 2.

Суммарное понижение расчетной температуры воды на участке изолированной подающей магистрали определяется в зависимости от диаметра трубопровода по /2/ страница 45.

Так как $d_{\scriptscriptstyle M}=32$ мм, следовательно, $\Delta t_{\scriptscriptstyle n...}=0,4^{\rm o}{\rm C}$ на 10 метров изолированной подающей магистрали.

Длина подающей магистрали до стояка 14,3 м, следовательно, $\Delta t_{n...}$ =0,57°C

Суммарное понижение температуры на участке подающего стояка до рассчитываемого прибора определяется по формуле

$$\Delta t_{n,c} = \sum \frac{q_i \cdot l_{yu} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c \cdot G_{yu,i}} \tag{1}$$

где q_i — теплоотдача 1 метра вертикальной или горизонтальной трубы, $B\tau/м$, на i-ом участке подающего стояка, принимается по таблице II.22 /2/;

 $l_{yu.i}$ – длина i-ого участка подающего стояка, м;

 $G_{yч.i}$ – расход воды, кг/ч, на i-ом участке подающего стояка;

с – удельная массовая теплоемкость воды, равная 4187 Дж/(кг °C);

 β_1 — поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь (сверх расчетной) приборов, принимается по таблице 9.4 /2/;

 β_2 – поправочный коэффициент, учитывающий дополнительные теплопотери вследствие размещения отопительных приборов у наружных ограждений, принимается по таблице 9.5 /2/.

Расход воды на участке определяется по формуле

$$G_{y_{4}} = \frac{Q_{y_{4}} \cdot \beta_{1} \cdot \beta_{2} \cdot 3,6}{c \cdot (t_{\Gamma} - t_{O})}$$

$$\tag{2}$$

где Q_{yy} – тепловая нагрузка участка, Bт;

 $t_{\scriptscriptstyle \Gamma}$ и $t_{\scriptscriptstyle 0}$ – расчетные температура горячей и обратной воды в системе, ${}^{\scriptscriptstyle 0}$ С, допускается, что разность температур горячей и обратной воды в приборе равна $20{}^{\scriptscriptstyle 0}$ С;

c – удельная массовая теплоемкость воды, равная 4187 Дж/(кг °C);

 β_1 — поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь (сверх расчетной) приборов, принимается по таблице 9.4 /2/;

 β_2 — поправочный коэффициент, учитывающий дополнительные теплопотери вследствие размещения отопительных приборов у наружных ограждений, принимается по таблице 9.5 /2/.

						Лист
					2907.2007.462.00 ПЗ	O
Изм.	Лист	№ докум.	Подпись	Дата		O

Например, расчет 1 участка

$$\begin{split} &t_{\Gamma}(1) = t_{\Gamma} - \Delta t_{_{\mathit{n.M}}} \\ &t_{\Gamma}(3') = 85 - 0,57 = 84,43 \ ^{\mathrm{o}}\mathrm{C} \\ &G_{_{\mathsf{y}\mathsf{q}}}\big(3'\big) = \frac{43644 \cdot 1,02 \cdot 1,04 \cdot 3,6}{4,187 \cdot 25} = 1592,3 \ \mathrm{K}\Gamma/\mathrm{Y} \end{split}$$

При $t_r(3')$ — t_B =84,43—18=66 °C теплоотдача открыто проложенного трубопроводы диаметром 45 мм по вертикали 135 BT/(м °C), по горизонтали 158 BT/(м °C).

$$\Delta t_{\text{n.c}}(3') = \frac{(135*0,06+158*0,6)*1,02*1,04*3,6}{4,187*1592,3} = 0,59^{\circ}\text{C}$$

Таблица 1 – Тепловой расчёт

Nº yч	Q, Вт	1 — Тепл G, кг/ч	I _{верт}	Гориз	q _{верт}	q _{гориз}	t _r	Δt	коментарий	t _{int}	t _{pacч}	d
1	43644	1592,27	0,06	0,6	135	158	84,43	0,059	без подводок к прибору	18	66	40
2	24076	878,37	0	0,6	106	128	84,37	0,080	без подводок к прибору	18	66	32
3	14882	542,93	3,6	0	85	104	84,29	0,514	без подводок к прибору	18	66	25
4	7826	285,52	3,6	7,1	85	104	83,78	3,336	без подводок к прибору	18	66	25
5	6517	237,76	0	3,2	73	91	80,44	1,117	без подводок к прибору	21	59	25
6	5208	190,01	0	9,1	57	73	79,32	3,189	без подводок к прибору	21	58	20
7	3781	137,93	0	4,1	50	64	76,14	1,735	без подводок к прибору	24	52	20
8	3243	118,30	0	4,25	51	65	74,40	2,130	без подводок к прибору	21	53	20
9	2125	77,51	0	4,1	38	51	72,27	2,460	без подводок к прибору	21	51	15
10	1587	57,88	0	4,8	37	49	69,81	3,706	без подводок к прибору	21	49	15
11	793	28,94	0	3,5	34	44	66,10	4,853	без подводок к прибору	21	45	15
4'	1309	47,76	0	3,2	28	37	60,00	2,261	без подводок к прибору	21	39	15
5'	2618	95,51	0	9,1	25	35	57,74	3,041	без подводок к прибору	21	37	15
6'	4045	147,59	0	4,1	21	28	54,70	0,709	без подводок к прибору	24	31	15
7'	4583	167,22	0	4,25	22	30	53,99	0,695	без подводок к прибору	21	33	15
8'	5701	208,01	0	4,1	26	36	53,29	0,647	без подводок к прибору	21	32	20
9'	6239	227,64	0	4,8	34	43	52,65	0,827	без подводок к прибору	21	32	25
10'	7033	256,58	0	3,5	32	41	51,82	0,510	без подводок к прибору	21	31	25
11'	7826	285,52	3,6	6	35	44	51,31	1,246	без подводок к прибору	18	33	25
3'	14882	542,93	3,6	0	34	43	50,06	0,206	без подводок к прибору	18	32	25
2'	24076	878,37	0	1,2	43	52	49,86	0,065	без подводок к прибору	18	32	32
1'	43644	1592,27	0,06	0,6	58	63	49,79	0,024	без подводок к прибору	18	32	40

Средний температурный напор в отопительных приборах находится по формуле

$$\Delta t_{cp} = 0.5 \cdot \left(t_{BX} + t_{BbIX} \right) - t_B \tag{3}$$

где $t_{\text{вх}}$ и $t_{\text{вых}}$ — расчетные температура входа горячей воды в отопительный прибор и выхода из него, ${}^{\text{o}}\text{C}$;

ı							Лист
						2907.2007.462.00 ПЗ	0
	Изм.	Лист	№ докум.	Подпись	Дата		9

 $t_{\scriptscriptstyle B}$ – расчетная температура внутри помещения, ${}^{\rm o}C$.

Таблица 2 – Средний температурный напор в отопительных приборах

<u> </u>		1		
t _{int}	t под	t _{oбp}	Δt_{cp}	
21	83,8	60,0	50,89	
21	80,4	57,7	48,09	
24	79,3	54,7	43,01	
21	76,1	54,0	44,06	
18	74,4	53,3	45,85	
21	72,3	52,6	41,46	
21	69,8	51,8	39,81	
21	66,1	51,3	37,71	

Расчетный расход воды, кг/ч, проходящий через отопительный прибор определяется по формуле

$$G_{np} = \frac{Q_{np} \cdot \beta_1 \cdot \beta_2 \cdot 3,6}{c \cdot (t_{\text{BX,ND}} - t_{\text{OfD,ND}})}$$

(4)

где Q_{np} – тепловая нагрузка прибора, B_{T} ;

 $t_{\mbox{\tiny BX, пp}}$ – расчетные температура входа горячей воды в отопительный прибор, $^{\mbox{\tiny o}} C$:

 $t_{\text{обр. пр}}$ - расчетная температура обратной воды из отопительного прибора, °C; c- удельная массовая теплоемкость воды, равная 4187 Дж/(кг °C);

 β_1 — поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь (сверх расчетной) приборов, принимается по таблице 9.4 /2/;

 β_2 — поправочный коэффициент, учитывающий дополнительные теплопотери вследствие размещения отопительных приборов у наружных ограждений, принимается по таблице 9.5 /2/.

Таблица 3 – Расчётный расход воды в приборе.

		I	
t _{вх.пр}	t _{oбр.пр} Q _{пр} , Вт		G _{пр} , кг/ч
83,8	60,0	1309	50,21
80,4	57,7	1309	52,59
79,3	54,7	1427	52,87
76,1	54,0	538	22,16
74,4	53,3	1118	48,31
72,3	52,6	538	25,01
69,8	51,8	793	40,22
66,1	51,3	793	48,90

						Лист
					2907.2007.462.00 ПЗ	10
Изм.	Лист	№ докум.	Подпись	Дата		10

Коэффициент приведения условного номинального теплового потока к номинальным условиям определяется по формуле

$$\varphi_K = \left(\frac{\Delta t_{cp}}{70}\right)^{n+1} \left(\frac{G_{np}}{360}\right)^p c \cdot \psi \cdot b \tag{5}$$

где Δt_{cp} - средний температурный напор в отопительном приборе, °C;

 G_{np} - расчетный расход воды, кг/ч, проходящий через прибор;

 ψ - коэффициент, учитывающий направления воды в приборе, если движение воды «сверху-вниз», то коэффициент равен 1;

b – коэффициент учета расчетного атмосферного давления для отопительных приборов, принимается по таблице 9.1 /2/;

n, p, c — экспериментальные числовые показатели для определение теплового потока отопительных приборов, принимаются по таблице $9.2\ / 2/$.

Таблица 4 – Коэффициент приведения условного номинального теплового потока.

Δt_{cp}	G _{пр} , кг/ч	φκ
50,89	50,21	0,653
48,09	52,59	0,607
43,01	52,87	0,525
44,06	22,16	0,532
45,85	48,31	0,569
41,46	25,01	0,493
39,81	40,22	0,472
37,71	48,90	0,442

b =	0,989
n =	0,3
p =	0,02
C =	1,039
ψ =	1

Теплоотдача открыто проложенных труб определяется по формуле

$$Q_{mp} = q_{\Gamma} \cdot l_{\Gamma} + q_{B}l_{B} \tag{6}$$

где $q_{\scriptscriptstyle \Gamma}$, $q_{\scriptscriptstyle B}$ - теплоотдача открыто проложенного трубопровода по горизонтали и по вертикали соответственно, принимается по таблице II.22 /2/;

 $l_{\rm r},\ l_{\rm B}$ — длина открыто проложенного трубопровода по горизонтали и по вертикали соответственно, м.

Изм.	Лист	№ докум.	Подпись	Дата

таблица 5 – Теплоотдача открыто проложенных труб.

1	Nº	І _{верт}	І _{гориз}	q _{верт}	q _{гориз}	$Q_{\tau p}$
1	пр					
1 0,2 0,5 28 37 24,1 Σ = 602,9 0 3,2 73 91 291,2 0,7 0,5 46 61 62,7 0 0,2 0,5 25 35 22,5 0 3,2 28 37 118,4 Σ = 494,8 452,6 0,7 0,5 43 57 58,6 3 0,2 0,5 21 28 18,2 0 6,2 25 35 217 \$\text{0} 0,7 0,5 43 57 58,6 3 0,2 0,5 21 28 18,2 \$\text{0} 0,9 57 73 211,7 0 4 262,4 4 262,4 4 262,4 4 262,4 4 0,7 0,5 43 57 58,6 4 262,4 4 22,4 4 22,4 4 0,2 0,5						
0,2 0,5 28 3/ 24,1 0 3,2 73 91 291,2 0,7 0,5 46 61 62,7 0 3,2 28 37 118,4 Σ = 494,8 494,8 452,6 0,7 0,5 43 57 58,6 3 0,2 0,5 21 28 18,2 0 6,2 25 35 217 Σ = 746,4 48,2 49,2	1					
0 3,2 73 91 291,2 0,7 0,5 46 61 62,7 0,2 0,5 25 35 22,5 0 3,2 28 37 118,4 Σ = 494,8 4 57 33 452,6 0,7 0,5 43 57 58,6 30,2 6,5 21 28 18,2 0 0,6 2,9 57 73 211,7 24,4 4 262,4 4 28,2 20,8 </td <td>•</td> <td>0,2</td> <td>0,5</td> <td>28</td> <td></td> <td></td>	•	0,2	0,5	28		
0,7 0,5 46 61 62,7 0,2 0,5 25 35 22,5 0 3,2 28 37 118,4 Σ = 494,8 0 6,2 57 73 452,6 0,7 0,5 43 57 58,6 3 0,2 0,5 21 28 18,2 0 6,2 25 35 217 Σ = 746,4 262,4 4 262,4 0 2,9 57 73 211,7 0 4,1 50 64 262,4 4 0,7 0,5 43 57 58,6 4 0,2 0,5 21 28 18,2 0 2,9 25 35 101,5 4 0,2 0,5 21 28 18,2 0 2,15 51 65 139,75 5,6 0			0.0	70		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•					
0 3,2 28 37 118,4 Σ = 494,8 0 6,2 57 73 452,6 0,7 0,5 43 57 58,6 0 0,2 0,5 21 28 18,2 0 6,2 25 35 217 Σ = 746,4 73 211,7 20 41,1 50 64 262,4 0,7 0,5 43 57 58,6 4262,4 4262,4 4262,4 4262,4 43 57 58,6 4262,4 4262,4 43 57 58,6 4262,4 426	2					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	3,2	28		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.0			
3 0,2 0,5 21 28 18,2 0 6,2 25 35 217 Σ = 746,4 0 2,9 57 73 211,7 0 4,1 50 64 262,4 0,7 0,5 43 57 58,6 4 0,2 0,5 21 28 18,2 0 2,9 25 35 101,5 0 4,1 21 28 114,8 Σ = 767,2 0 2,15 51 65 139,75 0,7 0,5 44 58 59,8 5 0,2 0,5 24 32 20,8 0 2,15 22 30 64,5 Σ = 284,85 59,8 59,8 5 0,2 0,5 24 32 20,8 0 2,15 22 30 64,5 Σ = 284,85 51 137,7 0,7 0,5 38 51	•					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3					
0 2,9 57 73 211,7 0 4,1 50 64 262,4 0,7 0,5 43 57 58,6 0 2,9 25 35 101,5 0 4,1 21 28 114,8 Σ = 767,2 0 2,15 51 65 139,75 0,7 0,5 44 58 59,8 0,2 0,5 24 32 20,8 0 2,15 22 30 64,5 Σ = 284,85 0 2,1 51 65 136,5 0 2,7 38 51 137,7 0,7 0,5 38 51 52,1 0 2,1 51 65 136,5 0 2,7 38 51 137,7 0,7 0,5 38 51 52,1 0 2,7 26 36		0	6,2	25		
0 4,1 50 64 262,4 0,7 0,5 43 57 58,6 0 2,9 25 35 101,5 0 4,1 21 28 114,8 Σ = 767,2 0 2,15 51 65 139,75 0,7 0,5 44 58 59,8 0 2,15 22 30 64,5 Σ = 284,85 0 2,15 22 30 64,5 Σ = 284,85 0 2,1 51 65 136,5 0 2,7 38 51 137,7 0,7 0,5 38 51 52,1 0 2,7 38 51 52,1 0 2,7 38 51 52,1 0 2,1 22 30 63 0 2,1 22 30 63 0 2,7 26 36 97,2 Σ = 505,2 0						
4 0,7 0,5 43 57 58,6 0 2,9 25 35 101,5 0 4,1 21 28 114,8 5 0 2,15 51 65 139,75 0,7 0,5 44 58 59,8 0,2 0,5 24 32 20,8 0 2,15 22 30 64,5 Σ = 284,85 0 2,1 51 65 136,5 0 2,1 51 65 136,5 0 2,7 38 51 137,7 0,7 0,5 38 51 52,1 0 2,1 22 30 63 0 2,1 22 30 63 0 2,1 22 30 63 0 2,7 26 36 97,2 Σ = 505,2 0 1,4 38 51 71,4 0 4,8 37 49 235,2 <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	4,1	21		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	2,15	22		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	2,7	26		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				22		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7					
Σ = 623,6 0 3,5 34 44 154 0 6 35 44 264 0,7 0,5 34 44 45,8 0,2 0,5 20 26 17 0 3,5 32 41 143,5 0 6 35 44 264						
0 3,5 34 44 154 0 6 35 44 264 0,7 0,5 34 44 45,8 0,2 0,5 20 26 17 0 3,5 32 41 143,5 0 6 35 44 264		0	4,8	34		
0 6 35 44 264 0,7 0,5 34 44 45,8 0,2 0,5 20 26 17 0 3,5 32 41 143,5 0 6 35 44 264			0	0.1		
8 0,7 0,5 34 44 45,8 0,2 0,5 20 26 17 0 3,5 32 41 143,5 0 6 35 44 264						
8 0,2 0,5 20 26 17 0 3,5 32 41 143,5 0 6 35 44 264						
0 3,5 32 41 143,5 0 6 35 44 264						
0 6 35 44 264	8					
Σ = 888,3		0	6	35		
					Σ =	888,3

Изм.	Лист	№ докум.	Подпись	Дата

Лист

12

Необходимая теплопередача отопительного прибора с учетом полезной теплоотдачи проложенных в помещении труб определяется по формуле

$$Q_{np} = Q_{\text{nom}} - \beta_{\text{Tp}} * Q_{\text{Tp}} \tag{7}$$

где $Q_{\text{пом}}$ – теплопотребность помещения, которое равно теплопотерям, Bт; $Q_{\text{тр}}$ – теплоотдача открыто проложенных труб в пределах помещения, Bт; $\beta_{\text{тр}}$ – коэффициент, учитывающий долю теплоты, передаваемую в помещение, при скрытой прокладке равен 0,5.

Таблица 6 – Необходимые теплопередачи отопительных приборов.

№ пр	$Q_{\tau p}$	$Q_{пом}$	Q_{np}
1	602,9	1309	1008
2	494,8	1309	1062
3	746,4	1427	1054
4	767,2	538	154
5	284,85	1118	976
6	505,2	538	285
7	623,6	793	482
8	888,3	793	349

Требуемый номинальный тепловой поток определяется по формуле

$$Q_{n.mp} = \frac{Q_{np}}{\varphi_{K}} \tag{8}$$

где Q_{np} - необходимая теплопередача отопительного прибора с учетом полезной теплоотдачи проложенных в помещении труб, Bt; φ_{κ} - коэффициент приведения условного номинального теплового потока к номинальным условиям.

Таблица 7 – Требуемый номинальный тепловой поток.

<u> </u>								
№ пр	Q_{np}	φκ	Q _{н.тр.}					
1	1008	0,653	1544					
2	1062	0,607	1749					
3	1054	0,525	2008					
4	154	0,532	290					
5	976	0,569	1713					
6	285	0,493	579					
7	482	0,472	1020					
8	349	0,442	790					

Принят отопительный прибор — чугунный радиатор МС-140-108, номинальный тепловой поток прибора $Q_{\text{н.у}} = 185 \; \text{Bt.}$

Изм.	Лист	№ докум.	Подпись	Дата

Минимальное допустимое число секций отопительного прибора (чугунно радиатора) определяется по формуле (допустимое число секций не менее 3).

$$N_{cek}(1) = \frac{916}{185} \cdot \frac{1,02}{1} = 5,1 \approx$$

$$N_{cek} = \frac{Q_{n.mp}}{Q_{n.y}} \cdot \frac{\beta_4}{\beta_3} \tag{9}$$

где β_4 — коэффициент учета способа установки радиатора, принимается по таблице 9.12 /2/, способ установки прибора: у стены без ниши перекрыт подоконной доской, коэффициент равен 1,02;

 β_3 — коэффициент учета числа секций в приборе, если число секций в приборе менее 15 штук, то коэффициент равен 1, если более 15 секций, то определяется по формуле

$$\beta_3 = 0.97 + \frac{34}{N \cdot Q_{u,v}} \tag{10}$$

Таблица 8 – Минимальное допустимое число секций.

№ пр	Q _{н.тр.}	N _{min}	N _{ycτ}	Q _{ycτ}
1	1544	8,51	9	1665
2	1749	9,64	9	1665
3	2008	11,07	11	2035
4	290	1,60	3	555
5	1713	9,45	10	1850
6	579	3,19	3	555
7	1020	5,62	6	1110
8	790	4,36	5	925

4 Определение естественного давления в ветвях 2^{ro} и 1^{ro} этажей

В горизонтальной двухтрубной системе отопления последовательно соединенные приборы на каждом этаже располагаются на одной и той же высоте над центром нагревания. Промежуточное изменение температуры и плотности по горизонтали из—за охлаждения воды в приборах не отражается на естественном циркуляционном давлении. Значение естественного циркуляционного давления зависит от вертикальных расстояний между центрами охлаждения и нагревания и определяется по формуле

$$\Delta P_{ecm}^{i} = g \cdot (\rho_o - \rho_\Gamma) \sum_{i=1}^{n} h_i$$
 (19)

где g– ускорение свободного падения, принимается 9.81 м/c^2 ;

 ρ_o, ρ_{Γ} — плотность воды соответственно в центре охлаждения и в центре нагревания, кг/м³;

h_i— вертикальное расстояние между центрами охлаждения и нагревание, м.

						Лист
					2907.2007.462.00 ПЗ	1.1
Изм.	Лист	№ докум.	Подпись	Дата		14

Определение естественного циркуляционного давления для ветвей второго этажа

$$\rho$$
(85°C)=968,65 κΓ/M³
 ρ (60°C)=983,24 κΓ/M³
 $\sum_{i=1}^{2} h=3,6*2+0,5=7,7$ M
 $\Delta P_{\text{ect}}^{2}$ =9,81·(983,24-968,65)·7,7 = 1102,1 Πa

Определение естественного циркуляционного давления для ветвей первого этажа

$$\rho$$
(85°C)=968,65 κΓ/M³
 ρ (60°C)=983,24 κΓ/M³
 $\sum_{i=1}^{1} h$ =3,6+0,5=4,1 M
 $\Delta P_{\text{ect}}^{2}$ =9,81·(983,24-968,65)·4,1 = 586,8 Πa

5 Гидравлический расчет системы отопления по линейным потерям давления

Гидравлический расчет основного циркуляционного кольца дает возможность установить изменения по всей длине подающей и обратной магистралей.

Основное циркуляционное кольцо горизонтальной двухтрубной системы отопления проходит через ветвь верхнего этажа наиболее удаленного стояка (стояк №3, ответвление на пятом этаже).

Потери давления в основном циркуляционном кольце определяются по формуле

$$\Delta P_{OLIK} = \sum_{i=1}^{n} \left(R_i \cdot l_i + Z_i \right) \tag{20}$$

где R- удельные линейные потери давления на один метр трубы, Па/м; l – длина рассчитываемого участка, м;

Z- местные потери давления на участке, Па, определяется по таблице II.3 /2/.

Для определения диаметра труб d, мм, скорости ω , м/с, и удельных линейных потерь R, Па/м, на участке необходимо определить расход воды G_{yq} , кг/ч, на участке и задаться интервалом средних ориентировочных значений удельных линейных потерь давления от 50 до 100 Па/м.

Расход воды на участке определяется по формуле

$$G_{yu} = \frac{\left(\sum Q_{n.i}\right)}{c \cdot (t_{\Gamma} - t_{o})} \cdot \beta_{1} \cdot \beta_{2} \tag{21}$$

где $\sum Q_{n,i}$ —тепловая нагрузка участка, Вт, принимается с расчетной схемы; с — удельная массовая теплоемкость воды, равная 4187 Дж/(кг °C);

						Ли
					2907.2007.462.00 ПЗ	
Изм.	Пист	Ν∘ ∂οκνΜ	Подпись	Пата		1

 β_1 — поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь (сверх расчетной) приборов, принимается по таблице 9.4 /2/;

 β_2 – поправочный коэффициент, учитывающий дополнительные теплопотери вследствие размещения отопительных приборов у наружных ограждений, принимается по таблице 9.5 /2/.

По таблице II.1 /2/ определяются диаметр d, мм, скорость ω , м/с, и удельные линейные потери R, Па/м, на участке в зависимости от расхода вводы на участке.

Потери давления на местные сопротивления определяются по таблице II.3 /2/ в зависимости от скорости движения воды ω , м/с, и суммы коэффициентов местных сопротивлений $\sum \zeta_i$ на участке.

Коэффициент местного сопротивления определяется по таблицам II.12—II.15 /2/ в зависимости от местного сопротивления (чугунный радиатор, отвод гнутый под углом 90° , задвижка параллельная и т.д.). Результаты расчета сведены в таблицу 9.

Таблица 9 – Гидравлический расчет стояка 1 (ветви цокольного, 1 и 2 этажей)

	Ответвление на цокольном этаже									
№, yч	Q _{уч} , Вт	G _{уч} , кг/ч	l _{уч} , М	d _y , мм	W, M/C	R, Па/м	R _I , Па	Σξ	Ζ, Па	R _i +Z, Па
1	43644	1592,27	17,8	40	0,342	47	836,6	3,5	200	1036,60
2	24076	878,37	0,6	32	0,245	29,5	17,7	5,99	175	192,70
20	9194	335,44	3,8	25	0,164	20	76	6,6	87,2	163,20
21	8142	297,04	7,5	25	0,146	16	120	2,37	24,9	144,90
22	7089	258,64	9	25	0,126	12,2	109,8	3,99	30,5	140,30
23	6167	224,98	4	25	0,11	9,5	38	2,39	14,13	52,13
24	5659	206,47	6,8	25	0,102	8,4	57,12	3,15	16,1	73,22
25	4617	168,44	5,7	20	0,135	19,3	110,01	1,64	14,6	124,61
25"	769	28,07	1,9	15	0,041	2,8	5,32	18,9	4,7	10,02
25'	5347	195,08	3,5	20	0,155	25	87,5	1,59	18,6	106,10
26'	6117	223,15	5,4	25	0,109	9,4	50,76	1,57	9,1	59,86
27'	6886	251,23	5,7	25	0,124	11,9	67,83	1,56	11,7	79,53
28'	7656	279,30	7,4	25	0,138	14,5	107,3	3,15	29	136,30
29'	8425	307,37	3,3	25	0,15	17	56,1	1,54	18	74,10
30'	9194	335,44	6,3	25	0,164	20	126	3,8	49,8	175,80
2'	24076	878,37	1,2	32	0,245	29,5	35,4	4,95	145	180,40
1'	43644	1592,27	17,8	40	0,342	47	836,6	3	171	1007,60
									3757,37 +13000	

Изм.	Лист	№ докум.	Подпись	Дата

	Ответвление на втором этаже									
1	43644	1592,27	17,8	40	0,342	47	836,6	3,5	200	1036,60
2	24076	878,37	0,6	32	0,245	29,5	17,7	5,99	175	192,70
3	14882	542,93	3,6	25	0,164	20	72	2	23,4	95,40
4	7826	285,52	10,7	25	0,141	15	160,5	5,2	50,44	210,94
5	6517	237,76	3,2	25	0,116	10,5	33,6	1,63	10,595	44,20
6	5208	190,01	9,1	20	0,153	24,2	220,22	3,26	38,142	258,36
7	3781	137,93	4,1	20	0,11	13,5	55,35	2,56	15,13	70,48
8	3243	118,30	4,25	20	0,094	10	42,5	2,4	10,32	52,82
8"	1118	40,79	1,9	15	0,059	4,4	8,36	14,53	26,145	34,51
8'	5701	208,01	4,1	20	0,167	28,5	116,85	1,55	21,235	138,09
9'	6239	227,64	4,8	25	0,112	9,7	46,56	0,78	4,836	51,40
10'	7033	256,58	3,5	25	0,126	12,2	42,7	1,56	12,012	54,71
11'	7826	285,52	9,6	25	0,14	14,8	142,08	1,5	14,37	156,45
3'	14882	542,93	3,6	25	0,164	20	72	1,5	17,55	89,55
2'	24076	878,37	1,2	32	0,245	29,5	35,4	4,95	145	180,40
1'	43644	1592,27	17,8	40	0,342	47	836,6	3	171	1007,60
										3674,19 +13000
			Оті	ветв	пение н	а перв	ом этаже			
1	43644	1592,27	17,8	40	0,342	47	836,6	3,5	200	1036,60
2	24076	878,37	0,6	32	0,245	29,5	17,7	5,99	175	192,70
3	14882	542,93	3,6	32	0,15	12,8	46,08	2	23,4	69,48
12	7056	257,41	3,8	25	0,127	12,5	47,5	3,7	29,6	77,10
13	6216	226,79	3,6	25	0,111	9,6	34,56	1,58	9,48	44,04
14	5377	196,16	2,9	20	0,154	25	72,5	1,59	18,603	91,10
15	4537	165,54	9,1	20	0,132	18,5	168,35	3,22	27,37	195,72
15"	1056	38,54	1,9	15	0,056	3,8	7,22	35,62	55,211	62,43
15'	3575	130,41	4,1	20	0,104	12	49,2	2,46	12,792	61,99
16'	4448	162,27	8,3	20	0,13	18	149,4	3,22	26,597	176,00
17'	5321	194,13	8,1	20	0,155	25	202,5	1,64	19,188	221,69
18'	6477	236,29	3,9	25	0,116	10,5	40,95	2,35	15,275	56,23
19'	7056	257,41	2,2	25	0,127	12,5	27,5	1,4	11,2	38,70
3'	14882	542,93	3,6	32	0,15	12,8	46,08	1,5	17,55	63,63
2'	24076	878,37	1,2	32	0,245	29,5	35,4	4,95	145	180,40
1'	43644	1592,27	17,8	40	0,342	47	836,6	3	171	1007,60
								3575,41 +13000		

Производим расчёт невязок системы. В таблицах гидравлического расчёта жирным выделены, т.е. ветки, которые необходимо между собой увязать.

$$\Delta P_{\text{Ilok.9T.}} = 163,2 + 144,9 + ... + 175,8 = 1340,7 \; \Pi a,$$

$$\Delta P_{2 \; \text{9T}} = 95,4 + 210,94 + ... + 89,55 = 1256,89 \; \Pi a,$$

$$\Delta P_{1.\text{9T.}} = 69,48 + 77,1 + ... + 63,63 = 1158,11 \; \Pi a,$$

Изм.	Лист	№ докум.	Подпись	Дата

Необходимо увязать между собой цокольный этаж и первый, второй этаж. Располагаемое давление для первого этажа с учётом влияния естественного давления будет равно:

$$\Delta P_p = 1340,7 + 0,4 \cdot 9,8 \cdot (983,24 - 968,68) \cdot 3,6 = 1546,17 \; \Pi a$$

$$\Delta P_{1.3T.} = 1158,11 \; \Pi a$$

Тогда H =
$$\frac{\Delta P_p - \Delta P_{1.9T.}}{\Delta P_p} = \frac{1546,17 - 1158,11}{1546,17} \cdot 100\% = 25\%$$

Подбираем шайбу, которую следует установить на участке 19'

$$d_{ui} = 3.5 \cdot \sqrt[4]{\frac{257.41^2}{(1546.17 - 1158.11)}} = 12.65$$

Следовательно принимаем $d_{\text{III}} = 13 \text{ мм}$.

Располагаемое давление для второго этажа с учётом влияния естественного давления будет равно:

$$\Delta P_p = 1340.7 + 0.4 \cdot 9.8 \cdot (983.24 - 968.68) \cdot 7.2 = 1751.64 \, \Pi a$$

$$\Delta P_{2.3T} = 1256,89 \text{ }\Pi a$$

Тогда
$$H = \frac{\Delta P_p - \Delta P_{1.9T.}}{\Delta P_p} = \frac{175164 - 125689}{175164} \cdot 100\% = 28\%$$

Подбираем шайбу, которую следует установить на участке 11'

$$d_{ui} = 3.5 \cdot \sqrt[4]{\frac{285.52^2}{(1751.64 - 1256.89)}} = 12.54$$

Следовательно принимаем $d_{\text{III}} = 13$ мм.

Изм.	Лист	№ докум.	Подпись	Дата

При расчете приняты коэффициенты местных сопротивлений на участках (таблица 11), для смежных участков местное сопротивление тройника отнесено к участку с меньшей тепловой нагрузкой.

Таблица 11 – Коэффициенты местных сопротивлений участков

	Ответвление на цокольном этаже						
№ участ	Местное сопротивление	Количество	ξ	Дополонительно			
	Задвижка параллельная	4	2	0,5			
	Внезапное сужение	1	0,5	0,5			
	Внезапное расширение	1	1	1			
1	Клапан смесительный трёхходовой	1	-	∆Р=13000 Па			
	Отвод гнутый под углом 90 ⁰ (d=32мм)	4	2	0,5			
		∑ξ =	3,5				
2	Тройник на разделение потоков, $G_{\text{ств}}/G_{\text{отв}} = 24076 / 43644 = 0,55$	1	5,49	5,49			
	Задвижка параллельная	1	0,5	0,5			
	•	∑ξ =	5,99				
	Тройник на проход, G _{прох} /G _{ств} =9194/24076=0,38	1	4,2	4,2			
20	Отвод гнутый под углом 90 ⁰ (d=15мм)	3	2,4	0,8			
		∑ξ =	6,6				
	Тройник на проход, $G_{\text{прох}}/G_{\text{ств}} = 8142/9194 = 0,89$	1	0,77	0,77			
21	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8			
	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8			
		∑ξ =	2,37				
	Тройник на проход, $G_{\text{прох}}/G_{\text{ств}} = 7089/8142 = 0,87$	1	0,79	0,79			
22	Отвод гнутый под углом 45 ⁰ (d=15мм)	2	1,6	0,8			
	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8			
		∑ξ =	3,99				
	Тройник на проход, $G_{\text{прох}}/G_{\text{ств}}$ =6167/7089 = 0,87	1	0,79	0,79			
23	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8			
		∑ξ =	2,39				
	Тройник на проход, G _{прох} /G _{ств} =5659/6167 = 0,92	1	0,75	0,75			
24	Отвод гнутый под углом 45 ⁰ (d=15мм)	2	1,6	0,8			
	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8			
		∑ξ =	3,15				
	Тройник на проход, $G_{\text{прох}}/G_{\text{ств}}$ =4617/5659 = 0,82	1	0,84	0,84			
25	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8			
		∑ξ =	1,64				

Изм.	Лист	№ докум.	Подпись	Дата

	Тройник на ответвление, d _{ств} /d _{отв} =15/15=1,	1	44,5	44,5
	$G_{\text{ств}}/G_{\text{отв}}$ =769/4617=0,17 Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8
	Радиатор МС-140-108	1	1,3	1,3
25"	КРД, d = 15мм	1	14	14
		1	0,5	0,5
	Задвижка параллельная	1	0,5	0,5
	Тройник на слияние потоков, $d_{\text{ств}}/d_{\text{отв}}=15/15=1$, $G_{\text{ств}}/G_{\text{отв}}=769/5347=0,14$	1	-43	-43
		∑ξ =	18,9	
	Тройник на проход, G _{прох} /G _{ств} =5347/6117 = 0,87	1	0,79	0,79
25'	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	1,59	
	Тройник на проход, G _{прох} /G _{ств} =6117/6886 = 0,89	1	0,77	0,77
26'	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	1,57	
	Тройник на проход, G _{прох} /G _{ств} =6886/7656 = 0,9	1	0,76	0,76
27'	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8
	\(\frac{1}{2} - \frac{1}{2}\)	∑ξ =	1,56	
	Тройник на проход, G _{прох} /G _{ств} =7656/8425 = 0,91	1	0,75	0,75
28'	Отвод гнутый под углом 90 ⁰ (d=15мм)	3	2,4	0,8
		∑ξ =	3,15	
	Тройник на проход, G _{прох} /G _{ств} =8425/9194 = 0,92	1	0,74	0,74
29'	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	1,54	
	Тройник на слияние потоков, d _{ств} /d _{отв} =15/20=0,75, G _{ств} /G _{отв} =9194/24076=0,47	1	1,4	1,4
30'	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8
	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8
		∑ξ =	3,8	
2'	Тройник на слияние потоков, $G_{\text{ств}}/G_{\text{отв}} = 24076/43644 = 0,55$	1	4,45	4,45
	Задвижка параллельная	1	0,5	0,5
	,	Σξ =	4,95	,
	Задвижка параллельная	3	1,5	0,5
1'	Внезапное сужение	1	0,5	0,5
'	Внезапное сужение Внезапное расширение	1	1	1
	Впозанное расширение		3	ı
		∑ξ =	3	

Изм.	Лист	№ докум.	Подпись	Дата

	Ответвление на втором этаже						
№ участ	Местное сопротивление	Количество	ξ	Дополонительно			
3	Тройник на ответвление, d _{ств} /d _{отв} =20/25=0,8, G _{ств} /G _{отв} =14882/24076=0,618	1	2	2			
		∑ξ =	2				
	Тройник на проход, G _{прох} /G _{ств} =7826/14882 = 0,53	1	2	2			
4	Отвод гнутый под углом 90 ⁰ (d=15мм)	3	2,4	0,8			
	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8			
		∑ξ =	5,2				
	Тройник на проход, G _{прох} /G _{ств} =6517/7826 = 0,83	1	0,83	0,83			
5	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8			
		∑ξ =	1,63				
	Тройник на проход, G _{прох} /G _{ств} =5208/6517 = 0,8	1	0,86	0,86			
6	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8			
	Отвод гнутый под углом 45 ⁰ (d=15мм)	2	1,6	0,8			
		∑ξ =	3,26				
	Тройник на проход, G _{прох} /G _{ств} =3781/5208 = 0,73	1	0,96	0,96			
7	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8			
		∑ξ =	2,56				
	Тройник на проход, G _{прох} /G _{ств} =3243/3781 = 0,86	1	0,8	0,8			
8	Отвод гнутый под углом 45 ⁰ (d=15мм)	2	1,6	0,8			
		∑ξ =	2,4				
	Тройник на ответвление, d _{ств} /d _{отв} =15/15=1, G _{ств} /G _{отв} =1118/3243=0,35	1	7,125	7,125			
	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8			
9	Радиатор МС-140-108	1	1,3	1,3			
9	КРД, d = 15мм	1	14	14			
	Задвижка параллельная	1	0,5	0,5			
	Тройник на слияние потоков, d _{ств} /d _{отв} =15/15=1, G _{ств} /G _{отв} =1118/5701=0,2	1	-10	-10			
		∑ξ =	14,525				
	Тройник на проход, G _{прох} /G _{ств} =5701/6239 = 0,91	1	0,75	0,75			
8'	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8			
		∑ξ =	1,55				
9'	Тройник на проход, G _{прох} /G _{ств} =6239/7033 = 0,88	1	0,78	0,78			

Подпись Дата

Изм. Лист № докум.

Лист 21

		∑ξ =	0,78	
	Тройник на проход, G _{прох} /G _{ств} =7033/7862=0,9	1	0,76	0,76
10'	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	1,56	
	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8
11'	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8
	Тройник на проход, G _{прох} /G _{ств} =7862/14882 = 0,53	1	2	2
		∑ξ =	4,4	
3'	Тройник на слияние потоков, $d_{\text{ств}}/d_{\text{отв}} = 20/25 = 0,8,$ $G_{\text{ств}}/G_{\text{отв}} = 14882/24076 = 0,62$	1	1,5	1,5
		∑ξ =	1,5	

	Ответвление на первом этаже							
№ участ	Местное сопротивление	Количество	ξ	Дополонительно				
12	Тройник на ответвление, d _{ств} /d _{отв} =15/20=0,75, G _{ств} /G _{отв} =7056/14882=0,47	1	2,1	2,1				
	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8				
		∑ξ =	3,7					
	Тройник на проход, G _{прох} /G _{ств} =6216/7056 = 0,88	1	0,78	0,78				
13	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8				
		∑ξ =	1,58					
	Тройник на проход, G_{npox}/G_{ctb} =5377/6216 = 0,87	1	0,79	0,79				
14	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8				
		∑ξ =	1,59					
	Тройник на проход, G _{прох} /G _{ств} =4537/5377 = 0,84	1	0,82	0,82				
15	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8				
	Отвод гнутый под углом 45 ⁰ (d=15мм)	2	1,6	0,8				
		∑ξ =	3,22					

Изм.	Лист	№ докум.	Подпись	Дата

l	I		1	
	Тройник на ответвление, $d_{\text{ств}}/d_{\text{отв}} = 15/15 = 1$, $G_{\text{ств}}/G_{\text{отв}} = 1056/4537 = 0,23$	1	21,25	21,25
	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8
4.511	Радиатор МС-140-108	1	1,3	1,3
15"	КРД, d = 15мм	1	14	14
	Задвижка параллельная	1	0,5	0,5
	Тройник на слияние потоков, $d_{\text{ств}}/d_{\text{отв}}=15/15=1$, $G_{\text{ств}}/G_{\text{отв}}=1056/3575=0,295$	1	-3,03	-3,03
		∑ξ =	35,62	
	Тройник на проход, G _{прох} /G _{ств} =3575/4448 = 0,8	1	0,86	0,86
15'	Отвод гнутый под углом 90 ⁰ (d=15мм)	2	1,6	0,8
		∑ξ =	2,46	
	Тройник на проход, $G_{\text{прох}}/G_{\text{ств}}=4448/5321=0,84$	1	0,82	0,82
16'	Отвод гнутый под углом 45 ⁰ (d=15мм)	2	1,6	0,8
	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	3,22	
	Тройник на проход, G _{прох} /G _{ств} =5321/6477 = 0,82	1	0,84	0,84
17'	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	1,64	
	Тройник на проход, G _{прох} /G _{ств} =6477/7056=0,92	1	0,75	0,75
18'	Отвод гнутый под углом 45 ⁰ (d=15мм)	1	0,8	0,8
	Отвод гнутый под углом 90 ⁰ (d=15мм)	1	0,8	0,8
		∑ξ =	2,35	
19'	Тройник на слияние потоков, $d_{\text{ств}}/d_{\text{отв}}=15/29=0,75,$ $G_{\text{ств}}/G_{\text{отв}}=7056/14882=0,47$	1	1,4	1,4
		∑ξ =	1,4	

Изм.	Лист	№ докум.	Подпись	Дата

6 Выбор оборудования теплового пункта

6.1 Подбор котлов для системы отопления

В котельной устанавливаем два котла, каждый из которых рассчитан на 50% общей мощности всех теплопотреблений здания. Схема местной водогрейной котельной и помещения для размещения колов, представлена в графической части данного курсового проекта.

Мощность системы отопления равна

$$Q_{co} = 1,1*43644=48 \text{ kBt}$$

По величине Q_{co} — подбираем марку и модель котла. Технические характеристики котла представлены в таблица 4

Таблица 4 – Технические характеристики котла

Фирма изгото- витель	Марка	Моде ль	Номинальная теплопроиз- водитель- ность кВт	Необхо- димый напор, Па	Допустимая температура подающей линии, °C	Допустимое избыточное давление, бар
Viessma nn	Vitorond	200	15-63	0	120	3

6.2 Подбор циркуляционного насоса

Определение требуемого давления создаваемого насосом

$$\Delta P_{H} = \Delta P_{co} - E^* \Delta P_{e} \tag{22}$$

 P_{co} - потери давления, Πa , в системе отопления основного циркуляционного кольца, определяется

$$\Delta P_{co} = 1, 1 \Delta P_{OUK} \tag{23}$$

$$\Delta P_{co} = 1,1*(3757,4+13000) = 18433 \ \Pi a$$

Т.к. ОЦК проходит через цокольный этаж, то влиянием естественного давления можно пренебречь.

$$\Delta P_{\scriptscriptstyle H} = 18433 = 18433 \; \Pi a = 1,84 \; \text{м.вод.ст.}$$

						Лист
					2907.2007.462.00 ПЗ	21
Изм.	Лист	№ докум.	Подпись	Дата		24

Так как циркуляционный насос размещен на подающей магистрали то $G_{\mbox{\tiny H}} = G_{\mbox{\tiny Co}}$

 G_{co} - расход воды системой отопления, кг/ч, принимается $G_{\rm H}=G_{co}=1592,3$ кг/ч = 1592,3/968,65=1,64 м³/ч ≈ 2 м³/ч По расчетному расходу и необходимому напору подбираем насос. Wilo TOP-S 25/5 1~ PN 10

Циркуляционный Inline насос, для монтажа на трубопроводе. Серийная тепловая изоляция. Ручное 3-х скоростное управление . Для подключения в электросеть 1 х 230 В, 50 Гц (до P2 = 180 Вт) или 3 х 400 В, 50 Гц. Насосы с 1 \sim мотором: Не требуют защиты до P2 = 90 W или от P2 = 180 W с полной защитой мотора посредством термоконтактов (WSK), при использовании прибора управления Wilo SK 602/622. Насосы с 3 \sim мотором: Не требуют защиты до P2 = 90 W, индикацией или от P2 = 180 Вт с встроенной защитой мотора включающую реле с световой индикацией неисправности, обобщенной сигнализацией неисправности насоса.

Міп. темпер. жидкости -20, Мах. темпер. жидкости 130, Потреб мощн 0,0899 кВт, Число оборотов 1640 об/мин

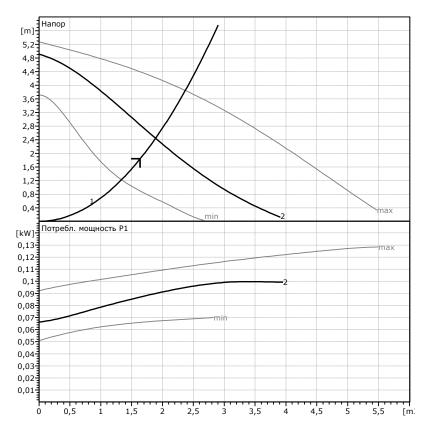


Рисунок 3 – Гидравлическая характеристика сети.

						Лис
					2907.2007.462.00 ПЗ	2.5
Изм.	Лист	№ докум.	Подпись	Дата		Δ.

6.3 Подбор расширительного бака

Расширительный бак предназначен для компенсации температурных расширений теплоносителя в замкнутых системах отопления. Объем расширительного бака должен быть не меньше объем температурного расширения теплоносителя. При разности температур в 20°C прирост объема составляет 3,58%. Принимается, что 15л теплоносителя системы отопления приходится на 1кВт тепловой мощности системы отопления.

Q_{с.0}= 48 кВт, следовательно объем системы отепления определяется по формуле

$$V_{c,o} = 15 * Q_{c,o}$$
 (25)

 $V_{co}=15*48=720$ л

Объем расширительного бака определяется по формуле

$$V_{p.6} = 0.0358 * V_{c.0}$$
 (26)

 $V_{p,6} = 0.0358*720=25.78 \text{ л}$

Изм.	Лист	№ докум.	Подпись	Дата

7 Спецификация оборудования и материалов

Вид оборудования, представлен в таблице 5

Таблица 5 – Спецификация оборудования

1 13	
Вид, модель, марка, наименование оборудования	Обозначение
Чугунный радиатор МС-140-108 (ГОСТ 8690–75)	MC
Задвижка чугунная параллельная ГОСТ 12820 – 80*	30Ч6Бр
Обратный клапан d = 45мм	19Ч21Бр
Циркуляционный насос фирмы WILO	TOP-S 25/5 1~ PN 10
Стальные водогазопроводные трубы (обыкновенные) по ГОСТ $3262-75*$ $d=15-50$ мм	
Чугунный водогрейный котел фирмы Viessmann	Vitorond 200
Кран регулируемый проходной	11Ч8ПК
Кран регулировочный трехходовой	
трипретулирово півні трежнодовой	

Г	Изм.	Лист	№ докум.	Подпись	Дата

Литература

- 1. Сканави А.Н., Махов Л.М. Отопление: Учеб. для вузов. М.: Издательство АСВ, 2002. 576с.: ил.
- 2. Внутренние санитарно технические устройства. В 3ч. Ч 1. Отопление/ В.Н. Богословский, Б.А Крупнов, А.Н. Сканави и др.; Под ред. И.Г Староверова и Ю.И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1990. 344 с.: ил. (Справочник проектировщика)
- 3. СНиП 41.01-2003 Отопление, вентиляция и кондиционирование. М.: Госстрой России, 1994
- 4. СНиП 23-01-99. Строительная климатология. М.: Госстрой России, 2000
- 5. СНиП 23-02-03 Тепловая защита зданий М.: Госстрой России, 2004
- 6. WILO Каталог для систем отопления 2000/2001

						Лис
					2907.2007.462.00 ПЗ	29
Изм.	Лист	№ докум.	Подпись	Дата		